ADSORPSI ION EMAS MENGGUNAKAN ASAM HUMAT TANAH GAMBUT DI BAWAH RADIASI SINAR UV

Authors

  • Puji Lestari Universitas Islam Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v6i1.9179

Keywords:

Adsorpsi reduktif, asam humat, ion Au(III), sinar UV

Abstract

Berbagai upaya dapat dilakukan untuk mendulang kembali (recovery) emas dari limbah elektronik, salah satunya adalah melalui proses adsorpsi. Salah satu adsorben yang dapat digunakan untuk proses adsorpsi ion emas di dalam larutan adalah asam humat (AH) hasil isolasi dari tanah gambut. Proses adsorpsi ion emas menggunakan AH tanah gambut diikuti dengan proses reduksi ion emas menjadi logam emas. Proses adsorpsi reduktif ini dapat ditingkatkan dengan penyinaran menggunakan sinar UV. Penelitian ini bertujuan untuk mempelajari proses adsorpsi ion emas menggunakan asam humat tanah gambut dengan adanya radiasi sinar UV. Proses adsorpsi ion emas dilakukan dengan metode batch dan parameter yang dipelajari antara lain pH, waktu interaksi, serta variasi konsentrasi ion emas dalam larutan.  pH optimum proses adsorpsi adalah 2. Proses adsorpsi ion emas pada AH tanah gambut di bawah radiasi UV mengikuti model kinetika adsorpsi yang diajukan oleh Santosa (2007) serta mengikuti model isotermal adsorpsi Langmuir. Radiasi sinar UV dapat membuat proses adsorpsi reduktif ion emas menggunakan AH tanah gambut menjadi lebih efektif. Kapasitas adsorpsi ion emas pada AH tanah gambut adalah 90,91 mg/g. Penambahan 2-propanol akan menurunkan efektivitas proses adsorpsi ion emas pada AH tanah gambut.

 

 

Author Biography

Puji Lestari, Universitas Islam Indonesia

Jurusan Teknik Lingkungan

References

Lestari, P. (2017). Isolation of Humic Acid from Peat Soil and Its Application as an Adsorbent for AuCl4- in Solution. AIP Conference Proceedings 1823. Yogyakarta.

Manahan, S. (2000). Environmental Chemistry, 7th edition. Florida: Lewish Publishers.

Nakajima, A., Ohe, K., Baba, Y., & Kijima, T. (2003). Mechanism of Gold Adsorption by Persimmon Tannin Gel. Analytical Sci., 1075-1077.

Ogata, T., & Nakano, Y. (2005). Mechanisms of Gold Recovery from Aqueous Solutions Using a Novel Tannin Gel Adsorbent Synthesized from Natural Condensed Tannin. Water Resources, 4281-4286.

Paclawski, K., & Fitzner, K. (2004). Kinetics of Gold(III) Chloride Complex Reduction Using Sulfur(IV). Metall. Mat.Trans. B., 35; 1071-1085.

Paclawski, K., & Sak, T. (2015). Kinetics and Mechanism of the Reaction of Gold(III) Chloride Complexes with Formic Acid. J. Min. Metall. Sect. B-Metall. 51, 133 – 142 . J. Min. Metall. Sect. B-Metall., 133 – 142 .

Parajuli, D., Adhikari, C., Kuriyama, M., Kawakita, H., Ohto, K., Inoue, K., et al. (2006). Selective Recovery of Gold by Novel Lignin-Based Adsorption Gel. Ind. Eng. Chem. Res., 8-14.

Polewski, K., Slawińska, D., Slawiński, J., & Pawlak, A. (2005). The Effect Of UV and Visible Light Radiation On Natural Humic Acid EPR Spectra and Kinetic Studies. Geoderma, 291-299.

Rochat, D., Hageluken, C., Keller, M., & Widmer, R. (2007). Optimal Recycling for Printed Wiring Boards (PWBs) in India. Proceeding of the R’07 World Congress Recovery of Materials and Energy for Resources Efficiency. Davos, Switzerland.

Santosa, S., Siswanta, D., Kurniawan, A., & Rahmanto, W. (2007). Hybrid of Chitin and Humic Acid as High Performance Sorbent for Ni(II). Surface Sci., 5155-5161.

Stevenson, F. (1994). Humus Chemistry: Genesis, Compositions, Reactions. New York: John Wiley & Sons Inc. .

Stumm, W., & Morgan, J. (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. 3rd edition. New York: John Wiley & Sons Inc.

Torre, M., Bachiller, D., Rendueles, M., Menendez, C., & Diaz, M. (2006). Cyanide Recovery from Gold Extraction Process Waste Effluents by Ion Exchange I.Equilibrium and Kinetics. Solvent Extr. Ion Exch. , 99-117.

Wang, S., Qian, K., Bi, X., & Huang, W. (2009). Influence of Speciation of Aqueous HAuCl4 on the Synthesis, Structure, and Property of Au Colloids . J. Phys. Chem. C. , 6505-6510.

Downloads

Published

2017-03-30

Issue

Section

Articles