Gamma Spectroscopy Prototype Design to Identify Radioactive Elements

Authors

  • Rony Djokorayono Badan Riset dan Inovasi Nasional, Jakarta, Indonesia
  • Santiko Tri Sulaksono Badan Riset dan Inovasi Nasional, Jakarta, Indonesia
  • Haryo Seno Badan Riset dan Inovasi Nasional, Jakarta, Indonesia
  • Utomo Badan Riset dan Inovasi Nasional, Jakarta, Indonesia
  • Hasriyasti Saptowati Badan Riset dan Inovasi Nasional, Jakarta, Indonesia
  • Puji Santoso Badan Riset dan Inovasi Nasional, Jakarta, Indonesia
  • Ferly Hermana Badan Riset dan Inovasi Nasional, Jakarta, Indonesia
  • Wiranto BS Badan Riset dan Inovasi Nasional, Jakarta, Indonesia
  • Agus Sumaryanto Badan Riset dan Inovasi Nasional, Jakarta, Indonesia

DOI:

https://doi.org/10.23887/ijnse.v7i2.65908

Keywords:

radioactive elements, gamma radiation, gamma spectroscopy prototype

Abstract

The identification system for radioactive elements used the single-channel analyzer (SCA) gamma spectroscopy method. However, the process of producing the spectrum was still quite long because it had to go through the process manually by scanning its energy; one of the other radioactive elements is gamma spectroscopy. This research aims to develop a prototype gamma spectroscopy that allows the identification of radioactive elements. In this study, researchers used an experimental method by designing a gamma spectroscopy prototype consisting of a 2.5 cm diameter NaI(TL) detector equipped with a photomultiplier, high voltage module, preamp module, pulse shaping module, sample hold module, and Atmega microcontroller with an LCD display resolution of 128 × 64. The results of testing this prototype were carried out with various radioactive samples. Researchers managed to identify radioactive elements by measuring electrical pulses produced by NaI(TL) detectors. Background counting, which is the result of enumeration from detectors without radioactive material, was identified and eliminated. The distribution pattern has a random nature, the energy resolution of the spectroscopy consists of 1024 channels, and the counting time can be set as needed via the reset button. The main finding of the study was that the gamma spectroscopy prototype was able to provide a clear picture of the energy spectrum of nuclear radiation, allowing good identification of radioactive elements. The results of this study have important implications in the field of identification of radioactive elements and can be used in a variety of scientific and industrial applications involving nuclear radiation.

References

Amoyal, G., Schoepff, V., Carrel, F., Michel, M., De Lanaute, N. B., & Angélique, J. C. (2021). Development of a hybrid gamma camera based on Timepix3 for nuclear industry applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 987, 164838. https://doi.org/10.1016/j.nima.2020.164838. DOI: https://doi.org/10.1016/j.nima.2020.164838

Aryanti, C. A., Suseno, H., Muslim, M., Prihatiningsih, W. R., & Aini, S. N. (2022). Potential Radiological Dose of 210 Po to Several Marine Organisms in Coastal Area of Coal-Fired Power Plant Tanjung Awar-Awar, Tuban. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 27(1), 73–82. https://doi.org/10.14710/ik.ijms.27.1.73-82. DOI: https://doi.org/10.14710/ik.ijms.27.1.73-82

Bhattacharyya, R., Maulik, A., Adak, R. P., Roy, S., Bhattacharya, T. S., Biswas, S., & Syam, D. (2021). Attenuation of electromagnetic radiation in Nuclear Track Detectors. Journal of Instrumentation, 16(6). https://doi.org/10.1088/1748-0221/16/06/T06001. DOI: https://doi.org/10.1088/1748-0221/16/06/T06001

Buonanno, L., Di Vita, D., Carminati, M., & Fiorini, C. (2020). A directional gamma-ray spectrometer with microcontroller-embedded machine learning. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 10(4), 433–443. https://doi.org/10.1109/JETCAS.2020.3029570. DOI: https://doi.org/10.1109/JETCAS.2020.3029570

Caridi, F., D’Agostino, M., Belvedere, A., Marguccio, S., Belmusto, G., & Gatto, M. F. (2016). Diagnostics techniques and dosimetric evaluations for environmental radioactivity investigations. Journal of Instrumentation, 11(10), C10012. https://doi.org/10.1088/1748-0221/11/10/C10012. DOI: https://doi.org/10.1088/1748-0221/11/10/C10012

Cebrián, S., Cuesta, C., Amaré, J., Borjabad, S., Fortuño, D., García, E., & Villar, J. A. (2012). Background model for a NaI(TL) detector devoted to dark matter searches. Astroparticle Physics, 37, 60–69. https://doi.org/10.1016/j.astropartphys.2012.07.009. DOI: https://doi.org/10.1016/j.astropartphys.2012.07.009

Charlesby, A. (2016). Atomic radiation and polymers: international series of monographs on radiation effects in materials. Elsevier.

Chierici, A., Malizia, A., Di Giovanni, D., Ciolini, R., & D’Errico, F. (2022). A high-performance gamma spectrometer for unmanned systems based on off-the-shelf components. Sensors, 22(3), 1078. https://doi.org/10.3390/s22031078. DOI: https://doi.org/10.3390/s22031078

Craven, A. R., Bhattacharyya, P. K., Clarke, W. T., Dydak, U., Edden, R. A., Ersland, L., & Oeltzschner, G. (2022). Comparison of seven modelling algorithms for γ‐aminobutyric acid–edited proton magnetic resonance spectroscopy. NMR in Biomedicine, 35(7), e4702. https://doi.org/10.1002/nbm.4702. DOI: https://doi.org/10.1002/nbm.4702

Dervishi, E., Ji, Z., Htoon, H., Sykora, M., & Doorn, S. K. (2019). Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale, 11(35), 16571–16581. https://doi.org/10.1039/C9NR05345J. DOI: https://doi.org/10.1039/C9NR05345J

Ersan, F., & Sarikurt, S. (2019). Monitoring the electronic, thermal and optical properties of two-dimensional MoO 2 under strain via vibrational spectroscopies: a first-principles investigation. Physical Chemistry Chemical Physics, 21(36), 19904–19914. https://doi.org/10.1039/C9CP04183D. DOI: https://doi.org/10.1039/C9CP04183D

Estienne, M., Fallot, M., Cormon, S., Algora, A., Bui, V. M., Cucoanes, A., & Zakari-Issoufou, A. A. (2014). Contribution of Recently Measured Nuclear Data to Reactor Antineutrino Energy Spectra Predictions. Journal of Physics: Conference Series, 120, 149–152. https://doi.org/10.1016/j.nds.2014.07.031. DOI: https://doi.org/10.1016/j.nds.2014.07.031

García-Toraño, E., Peyres, V., Caro, B., Roteta, M., Arnold, D., Burda, O., Ioan, M.-R., & De Felice, P. (2015). A novel radionuclide-specific detector system for the measurement of radioactivity at steelworks. Journal of Radioanalytical and Nuclear Chemistry, 305, 293–298. https://doi.org/10.1007/s10967-014-3901-8. DOI: https://doi.org/10.1007/s10967-014-3901-8

Gilmore, G. (2008). Practical gamma-ray spectroscopy. John Wiley & Sons. DOI: https://doi.org/10.1002/9780470861981

Hacke, P., Lokanath, S., Williams, P., Vasan, A., Sochor, P., TamizhMani, G., & Kurtz, S. (2018). A status review of photovoltaic power conversion equipment reliability, safety, and quality assurance protocols. Renewable and Sustainable Energy Reviews, 82, 1097–1112. https://doi.org/10.1016/j.rser.2017.07.043. DOI: https://doi.org/10.1016/j.rser.2017.07.043

Hamer, M. J., Zultak, J., Tyurnina, A. V., Zólyomi, V., Terry, D., Barinov, A., & Wilson, N. R. (2019). Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy. ACS Nano, 13(2), 2136–2142. https://doi.org/10.1021/acsnano.8b08726. DOI: https://doi.org/10.1021/acsnano.8b08726

He, Y., Liu, Z., McCall, K. M., Lin, W., Chung, D. Y., Wessels, B. W., & Kanatzidis, M. G. (2019). Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 922, 217–221. https://doi.org/10.1016/j.nima.2019.01.008. DOI: https://doi.org/10.1016/j.nima.2019.01.008

Jordan, D. C., Marion, B., Deline, C., Barnes, T., & Bolinger, M. (2020). PV field reliability status—Analysis of 100 000 solar systems. Progress in Photovoltaics: Research and Applications, 28(8), 739–754. https://doi.org/10.1002/pip.3262. DOI: https://doi.org/10.1002/pip.3262

Kramm, U. I., Ni, L., & Wagner, S. (2019). 57Fe Mössbauer spectroscopy characterization of electrocatalysts. Advanced Materials, 31(31), 1805623. https://doi.org/10.1002/adma.201805623. DOI: https://doi.org/10.1002/adma.201805623

Kumar, A., Kaur, R., Sayyed, M. I., Rashad, M., Singh, M., & Ali, A. M. (2019). Physical, structural, optical and gamma ray shielding behavior of (20+ x) PbO–10 BaO–10 Na2O–10 MgO–(50-x) B2O3 glasses. Physica B: Condensed Matter, 552, 110–118. https://doi.org/10.1016/j.physb.2018.10.001. DOI: https://doi.org/10.1016/j.physb.2018.10.001

Liu, F., Wu, R., Wei, J., Nie, W., Mohite, A. D., Brovelli, S., & Li, H. (2022). Recent progress in halide perovskite radiation detectors for gamma-ray spectroscopy. ACS Energy Letters, 7(3), 1066–1085. https://doi.org/10.1021/acsenergylett.2c00031. DOI: https://doi.org/10.1021/acsenergylett.2c00031

Malaka, M. (2019). Dampak Radiasi Radioaktif Terhadap Kesehatan. Foramadiahi: Jurnal Kajian Pendidikan Dan Keislaman, 11(2), 199–211. https://doi.org/10.46339/foramadiahi.v11i2.204. DOI: https://doi.org/10.46339/foramadiahi.v11i2.204

Mardiana, I., Prihandono, T., & Yushardi, Y. (2005). Kajian Kestabilan Inti Unsur-Unsur Pada Proses Peluruhan Zat Radioaktif Dengan Pendekatan Energi Ikat Inti Model Tetes Cairan. Jurnal Pengembangan Energi Nuklir, 7. https://doi.org/10.19184/jpf.v8i2.15212.

Meza Ramirez, C. A., Greenop, M., Ashton, L., & Rehman, I. U. (2021). Applications of machine learning in spectroscopy. Applied Spectroscopy Reviews, 56(8–10), 733–763. https://doi.org/10.1080/05704928.2020.1859525. DOI: https://doi.org/10.1080/05704928.2020.1859525

Muthmainnah, M., Milvita, D., & Wiyono, M. (2020). Penentuan Konsentrasi Radionuklida (Ra-226, Th-232, K-40, dan Cs-137) pada Bahan Pangan Menggunakan Spektrometer Gamma di Pasar Raya Kota Padang. Jurnal Fisika Unand, 9(3), 394–400. https://doi.org/10.25077/jfu.9.3.394-400.2020. DOI: https://doi.org/10.25077/jfu.9.3.394-400.2020

Ozur, G. E., & Proskurovsky, D. I. (2018). Generation of low-energy high-current electron beams in plasma-anode electron guns. Plasma Physics Reports, 44, 18–39. https://doi.org/10.1134/S1063780X18010130. DOI: https://doi.org/10.1134/S1063780X18010130

Park, Y. J. (2016). Remote Temperature Control System using a Zigbee Communication. Journal of Digital Convergence, 14(4), 259–265. https://doi.org/10.14400/JDC.2016.14.4.259. DOI: https://doi.org/10.14400/JDC.2016.14.4.259

Paschalis, S., Lee, I. Y., Macchiavelli, A. O., Campbell, C. M., Cromaz, M., Gros, S., & Beausang, C. W. (2013). The performance of the gamma-ray energy tracking in-beam nuclear array GRETINA. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 709, 44–55. https://doi.org/10.1016/j.nima.2013.01.009. DOI: https://doi.org/10.1016/j.nima.2013.01.009

Piveteau, L., Morad, V., & Kovalenko, M. V. (2020). Solid-state NMR and NQR spectroscopy of lead-halide perovskite materials. Journal of the American Chemical Society, 142(46), 19413–19437. https://doi.org/10.1021/jacs.0c07338. DOI: https://doi.org/10.1021/jacs.0c07338

Putri, M. K., Lesmono, A. D., & Harijanto, A. (2021). Simulasi Energi Ikat dan Energi Disintegrasi Peluruhan Unsur Radioaktif Deret Aktinium Berdasarkan Model Inti Tetesan Cairan (Telaah Klasik). Jurnal Pembelajaran Fisika, 10(1), 22–28. https://doi.org/10.19184/jpf.v10i1.23583. DOI: https://doi.org/10.19184/jpf.v10i1.23583

Qi, S., Wang, S., Chen, Y., Zhang, K., Ai, X., Li, J., & Zhao, H. (2022). Radionuclide identification method for NaI low-count gamma-ray spectra using artificial neural network. Nuclear Engineering and Technology, 54(1), 269–274. https://doi.org/10.1016/j.net.2021.07.025. DOI: https://doi.org/10.1016/j.net.2021.07.025

Qi, S., Zhao, W., Chen, Y., Chen, W., Li, J., Zhao, H., & Wang, S. (2022). Comparison of machine learning approaches for radioisotope identification using NaI(TI) gamma-ray spectrum. Applied Radiation and Isotopes, 186, 110212. https://doi.org/10.1016/j.apradiso.2022.110212. DOI: https://doi.org/10.1016/j.apradiso.2022.110212

Qian, S.-B., Shi, X.-D., Zhu, L.-Y., Li, L.-J., Zhang, J., Zhao, E.-G., Han, Z.-T., Zhou, X., Fang, X.-H., & Liao, W.-P. (2019). More than two hundred and fifty thousand spectroscopic binary or variable star candidates discovered by LAMOST. Research in Astronomy and Astrophysics, 19(5), 64. https://doi.org/https://iopscience.iop.org/article/10.1088/1674-4527/19/5/64. DOI: https://doi.org/10.1088/1674-4527/19/5/64

Rammah, Y. S., El-Agawany, F. I., Mahmoud, K. A., El-Mallawany, R., Ilik, E., & Kilic, G. (2020). FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses. Journal of Materials Science: Materials in Electronics, 31(12), 9099–9113. https://doi.org/10.1007/s10854-020-03440-5. DOI: https://doi.org/10.1007/s10854-020-03440-5

Reynolds, C. S., Marsh, M. D., Russell, H. R., Fabian, A. C., Smith, R., Tombesi, F., & Veilleux, S. (2020). Astrophysical limits on very light axion-like particles from Chandra grating spectroscopy of NGC 1275. The Astrophysical Journal, 890(1), 59. https://doi.org/10.3847/1538-4357/ab6a0c. DOI: https://doi.org/10.3847/1538-4357/ab6a0c

Roy, U. N., Camarda, G. S., Cui, Y., Gul, R., Yang, G., Zazvorka, J., & James, R. B. (2019). Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Scientific Reports, 9(1), 7303. https://doi.org/10.1038/s41598-019-43778-3. DOI: https://doi.org/10.1038/s41598-019-43778-3

Saudi, H. A., Abd-Allah, W. M., & Shaaban, K. S. (2020). Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. Journal of Materials Science: Materials in Electronics, 31, 6963–6976. https://doi.org/10.1007/s10854-020-03261-6. DOI: https://doi.org/10.1007/s10854-020-03261-6

Siegbahn, K. (2012). Alpha-, beta-and gamma-ray spectroscopy. Elsevier.

Stevie, F. A., & Donley, C. L. (2020). Introduction to x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A, 38(6). https://doi.org/10.1116/6.0000412. DOI: https://doi.org/10.1116/6.0000412

Sulyaev, Y. S., Puryga, E. A., Khilchenko, A. D., Kvashnin, A. N., Polosatkin, S. V., Rovenskikh, A. F., & Grishnyaev, E. V. (2013). Multi-purpose fast neutron spectrum analyzer with real-time signal processing. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 720, 23–25. https://doi.org/10.1016/j.nima.2012.12.044. DOI: https://doi.org/10.1016/j.nima.2012.12.044

Takada, A., Takemura, T., Yoshikawa, K., Mizumura, Y., Ikeda, T., Nakamura, Y., & Tanimori, T. (2022). First observation of the MeV gamma-ray universe with bijective imaging spectroscopy using the electron-tracking Compton telescope on board SMILE-2+. The Astrophysical Journal, 930(1), 6. https://doi.org/10.3847/1538-4357/ac6103. DOI: https://doi.org/10.3847/1538-4357/ac6103

Thabayneh, K. M., & Jazzar, M. M. (2013). Radioactivity levels in plant samples in Tulkarem district, Palestine and its impact on human health. Radiation Protection Dosimetry, 153(4), 467–474. https://doi.org/10.1093/rpd/ncs122. DOI: https://doi.org/10.1093/rpd/ncs122

Torowati, T., Ngatijo, N., Rahmiati, R., Mustika, D., Yusnitha, E., Yulianto, T., & Setiawan, J. (2021). Karakterisasi Kandungan Uranium dan Unsur Jejak Pelet Sinter UO2 untuk Forensik Nuklir. Urania: Jurnal Ilmiah Daur Bahan Bakar Nuklir, 27(1), 29–36. https://doi.org/10.17146/urania.2021.27.1.6224. DOI: https://doi.org/10.17146/urania.2021.27.1.6224

Wang, A. M., Pradhan, S., Coughlin, J. M., Trivedi, A., DuBois, S. L., Crawford, J. L., & Barker, P. B. (2019). Assessing brain metabolism with 7-T proton magnetic resonance spectroscopy in patients with first-episode psychosis. JAMA Psychiatry, 76(3), 314–323. https://doi.org/10.1001/jamapsychiatry.2018.3637. DOI: https://doi.org/10.1001/jamapsychiatry.2018.3637

Wang, C., Myshkin, V. F., Khan, V. A., & Panamareva, A. N. (2022). A review of the migration of radioactive elements in clay minerals in the context of nuclear waste storage. Journal of Radioanalytical and Nuclear Chemistry, 331(9), 3401–3426. https://doi.org/10.1007/s10967-022-08394-y. DOI: https://doi.org/10.1007/s10967-022-08394-y

Ye, Y., Sun, X., Liu, M., Zhao, Z., Zhang, X., & Wu, H. (2018). The remote farmland environment monitoring system based on ZigBee sensor network. International Journal of Computational Science and Engineering, 17(1), 25–33. https://doi.org/10.1504/IJCSE.2018.094416. DOI: https://doi.org/10.1504/IJCSE.2018.094416

Zlobina, A., Farkhutdinov, I., Carvalho, F. P., Wang, N., Korotchenko, T., Baranovskaya, N., & Farkhutdinov, A. (2022). Impact of environmental radiation on the incidence of cancer and birth defects in regions with high natural radioactivity. International Journal of Environmental Research and Public Health, 19(14), 8643. https://doi.org/10.3390/ijerph19148643. DOI: https://doi.org/10.3390/ijerph19148643

Downloads

Published

2023-11-01

How to Cite

Djokorayono, R. ., Sulaksono, S. T. ., Seno, H. ., Utomo, Saptowati, H. ., Santoso, P. ., Hermana, F. ., Wiranto BS, & Sumaryanto, A. . (2023). Gamma Spectroscopy Prototype Design to Identify Radioactive Elements. International Journal of Natural Science and Engineering, 7(2), 134–143. https://doi.org/10.23887/ijnse.v7i2.65908

Issue

Section

Articles