Groundwater Quality Analysis Based on Physical Properties of The Gunungtiga and Surrounding Areas
DOI:
https://doi.org/10.23887/ijnse.v7i2.67866Keywords:
Ground water quality, physical properties, water qualityAbstract
Gunungtiga area has never been studied for the quality of groundwater, and residents have also complained about the quality of groundwater, these became the basis for selecting the research location. This study aims to analyze groundwater quality in the Gunungtiga Region, Lampung Province. Quantitative approached was used for this research, it was carried out by mapping the groundwater level to estimate the recharge area and collecting data on parameters of the physical properties of groundwater, including color, taste, odor, temperature, pH, TDS, and EC. The physical properties approach was selected because it is relatively cheap and easy to observe, the data collection can also be done in situ. The physical property parameter data is then checked based on the Republic of Indonesia Minister of Health Regulation No. 492 of 2010. The observations at 14 points showed that the groundwater level in the research area is relatively shallow towards the west or in the direction with higher topography, so it can be interpreted as a recharge area, and it flowed towards the east area which has lower topography. The physical properties of the groundwater had no taste, odor, or color. The EC value ranges from 188.07 to 1066.82 µs/cm, including fresh water, the pH ranges from 5.41 to 7.5, the temperature ranges from 27.2 to 29.7 0C, and the TDS value ranges from 94. 04-542.91 mg/l. Of the 14 observation points, only 1 location met the quality standards, namely 22/DP/02. Treatment is required before groundwater can be used, such as filtering.
References
Abdel-Shafy, H. I., & Kamel, A. H. (2016). Groundwater in Egypt issue: resources, location, amount, contamination, protection, renewal, future overview. Egypt J Chem, 59(3), 321–362. https://doi.org/10.21608/ejchem.2016.1085. DOI: https://doi.org/10.21608/ejchem.2016.1085
Abdullahi, A., Jothimani, M., Getahun, E., Gunalan, J., & Abebe, A. (2023). Assessment of potential groundwater Zones in the drought-prone Harawa catchment, Somali region, eastern Ethiopia using geospatial and AHP techniques. The Egyptian Journal of Remote Sensing and Space Science, 26(3), 628–641. https://doi.org/10.1016/j.ejrs.2023.07.005. DOI: https://doi.org/10.1016/j.ejrs.2023.07.005
Ahmad, A. Y., & Al-Ghouti, M. A. (2020). Approaches to achieve sustainable use and management of groundwater resources in Qatar: A review. Groundwater for Sustainable Development, 11. https://doi.org/10.1016/j.gsd.2020.100367. DOI: https://doi.org/10.1016/j.gsd.2020.100367
Ahmed, A., Ghosh, P. K., Hasan, M., & Rahman, A. (2020). Surface and groundwater quality assessment and identification of hydrochemical characteristics of a south-western coastal area of Bangladesh. Environmental Monitoring and Assessment, 192, 1–15. https://doi.org/10.1007/s10661-020-8227-0. DOI: https://doi.org/10.1007/s10661-020-8227-0
Alshehri, F., El-Sorogy, A. S., Almadani, S., & Aldossari, M. (2023). Groundwater quality assessment in western Saudi Arabia using GIS and multivariate analysis. Journal of King Saud University-Science, 35(4). https://doi.org/10.1016/j.jksus.2023.102586. DOI: https://doi.org/10.1016/j.jksus.2023.102586
Arifianto, A. K. (2017). Analisis Pengembangan Air Bawah Tanah Terhadap Kepuasan Masyarakat di Kecamatan Sumbermanjing Wetan Kabupaten Malang. Reka Buana: Jurnal Ilmiah Teknik Sipil Dan Teknik Kimia, 2(1), 30–46. https://doi.org/10.33366/rekabuana.v2i1.662.
Bhunia, G. S., Keshavarzi, A., Shit, P. K., Omran, E. S. E., & Bagherzadeh, A. (2018). Evaluation of groundwater quality and its suitability for drinking and irrigation using GIS and geostatistics techniques in semiarid region of Neyshabur, Iran. Applied Water Science, 8, 1–16. https://doi.org/10.1007/s13201-018-0795-6. DOI: https://doi.org/10.1007/s13201-018-0795-6
Çadraku, H., Gashi, F., Shala, A., & Fetoshi, O. (2016). Variations in the Physico-Chemical Parameters of under groundwater of Blinaja catchment, Kosovo. IFAC-PapersOnLine, 49(29), 200–205. https://doi.org/10.1016/j.ifacol.2016.11.102. DOI: https://doi.org/10.1016/j.ifacol.2016.11.102
Cai, Z., Han, G., & Chen, M. (2018). Do water bodies play an important role in the relationship between urban form and land surface temperature? Sustainable Cities and Society, 39, 487–498. https://doi.org/10.1016/j.scs.2018.02.033. DOI: https://doi.org/10.1016/j.scs.2018.02.033
Cohen, A., Rasheduzzaman, M., Darling, A., Krometis, L. A., Edwards, M., Brown, T., & Rogawski McQuade, E. T. (2022). Bottled and Well Water Quality in a Small Central Appalachian Community: Household-Level Analysis of Enteric Pathogens, Inorganic Chemicals, and Health Outcomes in Rural Southwest Virginia. International Journal of Environmental Research and Public Health, 19(14), 8610. https://doi.org/10.3390/ijerph19148610. DOI: https://doi.org/10.3390/ijerph19148610
Hwang, H. H., Panno, S. V., & Hackley, K. C. (2015). Sources and changes in groundwater quality with increasing urbanization, northeastern Illinois. Environmental & Engineering Geoscience, 21(2), 75–90. https://doi.org/10.2113/gseegeosci.21.2.75. DOI: https://doi.org/10.2113/gseegeosci.21.2.75
Ikhwali, M. F., Ersa, N. S., Khairi, A., Prayogo, W., & Wesli, W. (2022). Development of Soil & Water Assessment Tool Application in Krueng Aceh Watershed Review. TERAS JURNAL: Jurnal Teknik Sipil, 12(1), 191–204. https://doi.org/10.29103/tj.v12i1.703. DOI: https://doi.org/10.29103/tj.v12i1.703
Jha, M. K., Shekhar, A., & Jenifer, M. A. (2020). Assessing groundwater quality for drinking water supply using hybrid fuzzy-GIS-based water quality index. Water Research, 179. https://doi.org/10.1016/j.watres.2020.115867. DOI: https://doi.org/10.1016/j.watres.2020.115867
Kurylyk, B. L., Irvine, D. J., & Bense, V. F. (2019). Theory, tools, and multidisciplinary applications for tracing groundwater fluxes from temperature profiles. Wiley Interdisciplinary Reviews: Water, 6(1). https://doi.org/10.1002/wat2.1329. DOI: https://doi.org/10.1002/wat2.1329
Loh, Y. S. A., Yidana, S. M., Banoeng-Yakubo, B., Sakyi, P. A., Addai, M. O., & Asiedu, D. K. (2016). Determination of the mineral stability field of evolving groundwater in the Lake Bosumtwi impact crater and surrounding areas. Journal of African Earth Sciences, 121, 286–300. https://doi.org/10.1016/j.jafrearsci.2016.06.007. DOI: https://doi.org/10.1016/j.jafrearsci.2016.06.007
Mairizki, F., Angga, R. P., & Putra, A. Y. (2020). Assessment of Groundwater Quality for Drinking Purpose in an Industrial Area, Dumai City, Riau, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 5(4), 204–208. https://doi.org/10.25299/jgeet.2020.5.4.5983. DOI: https://doi.org/10.25299/jgeet.2020.5.4.5983
Menberg, K., Blum, P., Kurylyk, B. L., & Bayer, P. (2014). Observed groundwater temperature response to recent climate change. Hydrology and Earth System Sciences, 18(11), 4453–4466. https://doi.org/10.5194/hess-18-4453-2014. DOI: https://doi.org/10.5194/hess-18-4453-2014
Mondal, N. C. (2021). Geoelectrical signatures for detecting water-bearing zones in a micro-watershed of granitic terrain from Southern India. Journal of Applied Geophysics, 191. https://doi.org/10.1016/j.jappgeo.2021.104361. DOI: https://doi.org/10.1016/j.jappgeo.2021.104361
Motlagh, K. S. (2022). Impacts of Geological Formations on Quality of Groundwater. Technium EcoGeoMarine, 1(1), 20–31. https://doi.org/10.47577/eco.v1i1.7478. DOI: https://doi.org/10.47577/eco.v1i1.7478
Onyancha, C., & Nyamai, C. (2014). Lithology and geological structures as controls in the quality of groundwater in Kilifi County, Kenya. British Journal of Applied Science & Technology, 4(25), 3631–3643. https://doi.org/10.9734/BJAST/2014/8784. DOI: https://doi.org/10.9734/BJAST/2014/8784
Pant, N., Rai, S. P., Singh, R., Kumar, S., Saini, R. K., Purushothaman, P., & Pratap, K. (2021). Impact of geology and anthropogenic activities over the water quality with emphasis on fluoride in water scarce Lalitpur district of Bundelkhand region, India. Chemosphere, 279. https://doi.org/10.1016/j.chemosphere.2021.130496. DOI: https://doi.org/10.1016/j.chemosphere.2021.130496
Prayogo, T. (2014). Kajian Kondisi Air Tanah Dangkal Daerah Wonomarto Kabupaten Lampung Utara. Jurnal Teknologi Lingkungan, 15(2), 107–114. https://doi.org/10.29122/jtl.v15i2.1604. DOI: https://doi.org/10.29122/jtl.v15i2.1604
Prayogo, W., Marhamah, F., Fauzan, H. A., Azizah, R. N., & Va, V. (2021). Strategi Pengendalian Pencemaran Industri untuk Pengelolaan Mutu Air Sungai dan Tanah di DAS Diwak, Jawa Tengah. Jurnal Sumberdaya Alam Dan Lingkungan, 8(3), 123–132. https://doi.org/10.21776/ub.jsal.2021.008.03.4. DOI: https://doi.org/10.21776/ub.jsal.2021.008.03.4
Purwono, P., Ristiawan, A., Ulya, A. U., Matin, H. A. A., & Ramadhan, B. S. (2019). Physical-chemical quality analysis of Serayu River water, Banjarnegara, Indonesia in different seasons. Sustinere: Journal of Environment and Sustainability, 3(1), 39–47. https://doi.org/10.22515/sustinere.jes.v3i1.83. DOI: https://doi.org/10.22515/sustinere.jes.v3i1.83
Ram, A., Tiwari, S. K., Pandey, H. K., Chaurasia, A. K., Singh, S., & Singh, Y. V. (2021). Groundwater quality assessment using water quality index (WQI) under GIS framework. Applied Water Science, 11, 1–20. https://doi.org/10.1007/s13201-021-01376-7. DOI: https://doi.org/10.1007/s13201-021-01376-7
Roques, C., Aquilina, L., Bour, O., Maréchal, J. C., Dewandel, B., Pauwels, H., & Hochreutener, R. (2014). Groundwater sources and geochemical processes in a crystalline fault aquifer. Journal of Hydrology, 519, 3110–3128. https://doi.org/10.1016/j.jhydrol.2014.10.052. DOI: https://doi.org/10.1016/j.jhydrol.2014.10.052
Sadat-Noori, S. M., Ebrahimi, K., & Liaghat, A. M. (2014). Groundwater quality assessment using the Water Quality Index and GIS in Saveh-Nobaran aquifer, Iran. Environmental Earth Sciences, 71, 3827–3843. https://doi.org/10.1007/s12665-013-2770-8. DOI: https://doi.org/10.1007/s12665-013-2770-8
Sandeep, K., Athira, A. S., Arshak, A. A., Reshma, K. V., Aravind, G. H., & Reethu, M. (2023). Geoelectrical and hydrochemical characteristics of a shallow lateritic aquifer in southwestern India. Geosystems and Geoenvironment, 2(2). https://doi.org/10.1016/j.geogeo.2022.100147. DOI: https://doi.org/10.1016/j.geogeo.2022.100147
Sarikhani, R., Ghassemi Dehnavi, A., Ahmadnejad, Z., & Kalantari, N. (2015). Hydrochemical characteristics and groundwater quality assessment in Bushehr Province, SW Iran. Environmental Earth Sciences, 74, 6265–6281. https://doi.org/10.1007/s12665-015-4651-9. DOI: https://doi.org/10.1007/s12665-015-4651-9
Snæbjörnsdóttir, S. Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S. R., & Oelkers, E. H. (2020). Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment, 1(2), 90–102. https://doi.org/10.1038/s43017-019-0011-8. DOI: https://doi.org/10.1038/s43017-019-0011-8
Walter, J., Chesnaux, R., Cloutier, V., & Gaboury, D. (2017). The influence of water/rock − water/clay interactions and mixing in the salinization processes of groundwater. Journal of Hydrology: Regional Studies, 13, 168–188. https://doi.org/10.1016/j.ejrh.2017.07.004. DOI: https://doi.org/10.1016/j.ejrh.2017.07.004
Wiyono, M. B., & Adji, T. N. (2021). Analysis of Groundwater Quality for Clean Water Supply in Pasaran Island, Bandar Lampung City, Indonesia. Forum Geografi, 35(1). https://doi.org/10.23917/forgeo.v35i1.12270. DOI: https://doi.org/10.23917/forgeo.v35i1.12270