Pergeseran Paradigma pada Penelitian Pengenalan Tulisan Tangan Berdasarkan Teori Pemikiran Thomas Kuhn

Authors

  • Reza Budiawan Universitas Telkom
  • Arief Ichwan Program Studi Teknik Elektro dan Informatika, Institut Teknologi Bandung, Bandung
  • Rinaldi Munir Program Studi Teknik Elektro dan Informatika, Institut Teknologi Bandung
  • Dimitri Mahayana Program Studi Teknik Elektro dan Informatika, Institut Teknologi Bandung

DOI:

https://doi.org/10.23887/jfi.v6i2.41740

Keywords:

Pengenalan tulisan tangan, Revolusi sains, Teori Kuhn

Abstract

Perkembangan ilmu pengetahuan terjadi di berbagai bidang pengetahuan ilmiah. Hal ini merupakan perwujudan dari dasar filsafat modern logosentris yang identik dengan kebenaran tunggal dan absolut. Salah satunya dapat dilihat pada bidang penelitian pengenalan tulisan tangan. Sistem pengenalan tulisan tangan merupakan kemampuan komputer dalam menerjemahkan tulisan tangan menjadi bentuk digital. Terdapat paling tidak dua pendekatan yang umum diimplementasikan pada studi ini, yaitu pendekatan tradisional dan modern. Pendekatan pada studi tersebut memperlihatkan adanya perkembangan dalam penelitian yang sudah berlangsung dalam waktu yang lama. Studi ini dilakukan untuk melihat adanya pergeseran paradigma dalam penelitian yang dilakukan. Menurut teori Kuhn, pergeseran paradigma terjadi ketika adanya pergantian sebagian atau seluruh cara pandang pada ilmu pengetahuan. Pergeseran paradigma ini dilihat dari observasi tujuh puluh publikasi yang paling banyak disitasi di bidang pengenalan tulisan tangan. Melalui pembahasan, terlihat bahwa adanya perkembangan nonkumulatif pada studi yang dilakukan. Selain itu, memperlihatkan topik penelitian pengenalan tulisan tangan yang sudah masuk ke dalam tahap anomali dalam tahap perkembangan ilmu menurut teori Thomas Kuhn.

Author Biography

Reza Budiawan, Universitas Telkom

Program Studi D3 Rekayasa Perangkat Lunak Aplikasi

References

Beigi, H. S. (1993). An Overview of Handwriting Recognition. Proceedings of the 1 st Annual Conference on Technological Advancements in Developing Countries, (pp. 30-46).

Burhanuddin, N. (2018). Filsafat Ilmu. Jakarta: Prenadamedia Group.

Choudhary, A., Rishi, R., & Ahlawat, S. (2013). A New Character Segmentation Approach for Off-Line Cursive Handwritten Words. Procedia Computer Science, 88-95.

Ghosh, S., Lahiri, D., Bhowmik, S., Kavallieratou, E., & Sarkar, R. (2018). Text/Non-Text Separation from Handwritten Document Images Using LBP Based Features: An Empirical Study. Journal of Imaging.

Guo, H., & Ding, Q. (2020). A Framework for Word Segmentation in Images using Density-based Clustering. EPiC Series in Computing, (pp. 187-196). San Francisco.

Gupta, N., & Liu, W. (2021). Line Segmentation from Unconstrained Handwritten Text Images using Adaptive Approach.

Jalaluddin, & Idi, H. A. (2016). Filsafat Pendidikan: Manusia, Filsafat, dan Pendidikan. Depok: RajaGrafindo Persada.

Kadhm, M. S., & Hassan, A. K. (2015). Handwriting Word Recognition Based on SVM Classifier. International Journal of Advanced Computer Science and Applications, 64-68.

Khayyat, M., & Nobile, N. (2019). Handwriting Recognition Systems and Applications. In Frontiers in Pattern Recognition and Artificial Intelligence (pp. 63-64). Singapore: World Scientific Publishing Co. Pte. Ltd.

Mahayana, D. (2018). Filsafat Ilmu Pengetahuan. Bandung: Penerbit ITB.

Manikandan, V., Venkatachalam, V., Kirthiga, M., Harini, K., & Devarajan, N. (2010). An enhanced algorithm for Character Segmentation in document image processing. IEEE International Conference on Computational Intelligence and Computing Research, (pp. 1-5).

Mawaddah, S., & Suciati, N. (2020). Pengenalan Karakter Tulisan Tangan Menggunakan Ekstraksi Fitur Bentuk Berbasis Chain Code. Jurnal Teknologi Informasi dan Ilmu Komputer, 683.

Mishra, A. (2017). Forensic Graphology: Assessment of Personality. Forensic Research & Criminology International Journal, 9-12.

Pathak, A. R., Raut, A., Pawar, S., Nangare, M., Abbott, H. S., & Chandak, P. (2020). Personality analysis through handwriting recognition. Journal of Discrete Mathematical Sciences and Cryptography, 19-33.

Pradeep, J., Srinivasan, E., & Himavathi, S. (2011). Diagonal based feature extraction for handwritten character recognition system using neural network. International Conference on Electronics Computer Technology, (pp. 364-368).

Putri, E. W., Yuwana, L., & Afif, M. B. (2020). Epistemology of Thomas S. Kuhn’s Shifting Paradigm and Its Relevance to Islamic Science. Khalifa: Journal of Islamic Education, 1-18.

Rahmanian, M., & Shayegan, M. A. (2021). Handwriting-based gender and handedness classification using convolutional neural networks. Multimedia Tools and Applications.

Schalkoff, R. J. (2008). Pattern Recognition. In Wiley Encyclopedia of Computer Science and Engineering. John Wiley & Sons, Inc.

Shi, Z., & Govindaraju, V. (2004). Line separation for complex document images using fuzzy runlength. First International Workshop on Document Image Analysis for Libraries, 2004. Proceedings. Palo Alto.

Standard Reference Data, NIST. (2019, 04 27). National Institute of Standards and Technology. Retrieved from NIST Special Database 6: https://www.nist.gov/srd/nist-special-database-6

Vinjit, B. M., Bhojak, M. K., Kumar, S., & Chalak, G. (2020). A Review on Handwritten Character Recognition Methods and Techniques. Proceedings of the 2020 IEEE International Conference on Communication and Signal Processing, ICCSP 2020, (pp. 1224-1228). India.

Warren, K. (2018, March 8). Graphology. Retrieved from The Ohio State Univeristy (College of Arts and Sciences): https://u.osu.edu/vanzandt/2018/03/08/graphology/

Zanchettin, C., Bezerra, B. L., & Azevedo, W. W. (2012). A KNN-SVM hybrid model for cursive handwriting recognition. The 2012 International Joint Conference on Neural Networks (IJCNN). Brisbane.

Published

2023-06-30

Issue

Section

Articles