Analisis Molekuler dan Morfologi P. amabilis Transgenik dengan Gen Pembungaan PaFT

Authors

  • Ida Ayu Purnama Bestari Universitas Pendidikan Ganesha

Keywords:

Phalaenopsis amabilis, multishoot, PaFT gene, transgenic, flowering locus T

Abstract

Phalaenopsis amabilis (L.) Blume or moon orchid is a type of orchid that has high economic and aesthetic value, but the flowering time is relatively long. Induction of flowering was carried out by inserting the PaFT gene with the ubiquitin promoter in the plant to obtain transgenic candidate plants (transformants). Transformant plants were grown in New Phalaenopsis (NP) medium for 40 weeks. Molecular analysis on transformant plants obtained P. amabilis transgenic. Amplification with ubiquitin (forward) and T-Nos (reverse) and deg PaFT primers in transgenic plants obtained DNA sequences of 1137 bp and 533 bp, while for non-transformant plants with deg PaFT primers, DNA bands of 1500 bp were obtained. The development of transgenic and non-transformant plants were then compared at 10, 20, 30, and 40 weeks of age. The results showed that transgenic plants produced multiple shoots/multishoots and longer roots compared to the roots of non-transformant plants. According to the literature study, there are morphological differences in some plants that carry the flowering locus T gene compared to nontransforman/wildtype plants.

Author Biography

Ida Ayu Purnama Bestari, Universitas Pendidikan Ganesha

instructure (lecture) in biologi education department

References

Bercu, R., A. Bavaru., and L. Broasca. 2011. Anatomical Aspects of Phalaenopsis amabilis (l.) Blume. Annals of RSCB, 16 (2).

Bouché, F., D’Aloia, M., Tocquin, P. et al. Integrating roots into a whole plant network of flowering time genes in Arabidopsis thaliana. Sci Rep 6, 29042 (2016). https://doi.org/10.1038/srep29042

Cheng, X., Guifen, L., Nick, K., Yuhong, T., Jiangqi, W. 2020. Genetic regulation of flowering time and inflorescence architecture by MtFDa and MtFTa1 in Medicago truncatula. Journal Plant Physiology 185 (1): 161-178.

Guo, B., Hexige, S., Zhang, T., Pittman, J. K., Chen, D., Ming, F. 2007. Cloning and Characterization of a PI-like MADS-Box Gene in Phalaenopsis Orchid. Journal of Biochemistry and Molecular Biology, 40: 845-852.

Howell, S. H. 1998. Molecular of Plant Development. Cambridge University Press.

Hsiao, Y-Y., Pan, Z-J., Hsu, C-C., Yang, Y-P., Hsu, C-Y, Chuang, Y-C, Shih, H-H., Chen, W-H., Tsai, W-C., Chen, H-H. 2011. Plant Cell Physiol,. 52 (9): 1467-1486.

Irshanty, F. M., Andi, S., Santoso, T. J. 2014. Morphological and Molecular Analysis and Flowering Time of T2 Generation Transgenic Rice cv. Nipponbare Carrying CONSTANS (CO) Gene. Makara J. Sci 18 (1): 7-12

Jiang, P., Shiliang, W., Han, Z., Hao, L., Fei, Z., Yanhua, S., Zuntao, X., Haiyan, L., Qian, Q., Yong, D. 2018. SIP1 participates in regulation of flowering time in rice by recruiting OsTrx1 to Ehd1. New Phytologist 219 (1): 422 – 435.

Kikuchi, R., Kawahigashi, H., Ando, T., Toonoka, T., Handa, H. 2009. Molecular and Functional Characterization of PEBP Genes in Barley Reveal the Diversification of Their Roles in Flowering. Plant Physiology, 149: 1341–1353.

Kim, G.; Rim, Y.; Cho, H.; Hyun, T.K. 2022. Identification and Functional Characterization of FLOWERING LOCUS T in Platycodon grandiflorus. Plants 2022, 11, 325. https://doi.org/10.3390/ plants11030325

Komiya R., Yokoi S. & Shimamoto K. 2009. A gene network forlong-day flowering activates RFT1 encoding a mobile floweringsignal in rice. Development, 136: 3443–3450.

Kong, F., B. Liu., Z. Xia., S. Sato., B. M. Kim., S. Watanabe., T. Yamada., S. Tabata., A. Kanazawa., K. Harada., and J. Abe. 2010. Two Coordinately Regulated Homologs of Flowering Locus T are Involved in The Control of Photoperiodic Flowering in Soybean. Plant Physiology, 154; 1220–1231

Książkiewicz, M., Rychel, S., Nelson, M. N., Wyrwa, K., Naganowska, B., Wolko, B. 2016. Expansion of the phosphatidylethanolamine binding protein family in legumes: a case study of Lupinus angustifolius L. FLOWERING LOCUS T homologs, LanFTc1 and LanFTc2. BMC Genomics (2016) 17:820

Li, C., Lin, H., Dubcovsky, J. 2015. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley. The Plant Journal 2015 (84): 70 – 82.

Li C, Zhang Y, Zhang K, Guo D, Cui B, Wang X and Huang X. 2015. Promoting flowering, lateral shoot outgrowth, leaf development, and flower abscission in tobacco plants overexpressing cotton FLOWERING LOCUS T (FT)-like gene GhFT1. Front. Plant Sci. 6:454. doi: 10.3389/fpls.2015.00454

Liu, L., Lijie, X., Yupeng, J. & Hao, Y. 2021. Regulation by FLOWERING LOCUS T and TERMINAL FLOWER 1 in Flowering Time and Plant Architecture. Small Struct, 2, https://doi.org/10.1002/sstr.202000125

Lv B, Nitcher R, Han X, Wang S, Ni F, et al. (2014) Characterization of FLOWERING LOCUS T1 (FT1) Gene in Brachypodium and Wheat. PLoS ONE 9(4): e94171. doi:10.1371/journal.pone.0094171.

Odipio J, Getu B, Chauhan RD, Alicai T, Bart R, Nusinow DA, et al. (2020) Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava. PLoS ONE 15(1): e0227199. https://doi.org/10.1371/journal.pone.0227199Soares,

J. M., Kyle, C. W., Wenming, Q., Daniel, S., Lamiaa, M. M., Mahmoud, Hao, W., Patrick, H., Janice, Z., Kawther, A. J., Jude, W. G., Manjul, D. 2020. The vascular targeted citrus FLOWERING LOCUS T3 gene promotes non inductive early fowering in transgenic Carrizo rootstocks and grafted juvenile scions. Nature research 10:21404 https://doi.org/10.1038/s41598-020-78417-9

Tamaki S., Matsuo S., Wong H.L., Yokoi S. & Shimamoto K. 2007. Hd3a protein is a mobile flowering signal in rice. Science, 316: 1033–1036.

Tanaka, N., Ayano, U., Narumi, S., Naozumi, M., Sadao, K., Sae, T., Yuki, T-M., Masato, W. 2014. Overexpression of Arabidopsis FT gene in apple leads to perpetual flowering. Plant Biotechnology, 31: 11–20.

Semiarti, E., Indrianto, A., Purwantoro, A., Machida, Y., Machida, C. 2011. Agrobacterium-Mediated Transformation of Indonesian Orchids for Micropropagation. In: Genetic Transformation. InTech, Croatia: 215-240. ISBN 978-953-307-364-4 2.

Sun L-M, Zhang J-Z and Hu C-G (2016) Characterization and Expression Analysis of PtAGL24, a SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 (SVP/AGL24)-Type MADS-Box Gene from Trifoliate Orange (Poncirus trifoliata L. Raf.). Front. Plant Sci, 7: 823. doi: 10.3389/fpls.2016.00823

Xu, F., Xiaofeng, R., Xiaohua, H., Shuiyuan, C. 2012. Recent Advances of Flowering Locus T Gene in Higher Plants. Int. J. Mol. Sci. 2012 (13): 3773-378, doi:10.3390/ijms13033773

Downloads

Published

2022-03-31

Issue

Section

Articles