Penerapan Teknik Polymerase Chain Reaction (PCR) dalam Mendeteksi Bakteri Patogen pada Sektor Peternakan dan Kesehatan Masyarakat

Authors

  • Made Dwi Ambara Putra Program Studi Magister Ilmu Biomedik, Fakultas Kedokteran Universitas Udayana
  • Ni Nyoman Sri Budayanti Program Studi Magister Ilmu Biomedik, Fakultas Kedokteran Universitas Udayana
  • I Putu Bayu Mayura Program Studi Magister Ilmu Biomedik, Fakultas Kedokteran Universitas Udayana

DOI:

https://doi.org/10.23887/jjpb.v11i3.91463

Keywords:

PCR, livestock health, zoonosis, molecular diagnostics

Abstract

Polymerase Chain Reaction (PCR) technology has emerged as a significant breakthrough in the detection and management of diseases in the livestock sector and public health. This study aims to evaluate the effectiveness and applications of PCR in detecting pathogens in livestock and zoonotic diseases that can transfer from animals to humans. The research adopts a literature review approach, analyzing various scientific findings related to the application of PCR in different contexts. The results demonstrate that PCR offers advantages in sensitivity, specificity, and detection speed compared to conventional methods, enabling effective early intervention to prevent disease spread. Furthermore, innovations such as digital PCR, Point-of-Care PCR systems, and real-time data integration broaden its applicability, particularly in resource-limited settings. These findings underscore the importance of continuous research and development in PCR technology to enhance disease surveillance and global health management.

References

Avni, T., Leibovici, L., & Paul, M. (2011). PCR diagnosis of invasive candidiasis: Systematic review and meta-analysis. Journal of Clinical Microbiology, 49(2), 665–670. https://doi.org/10.1128/JCM.01602-10

Babafemi, E. O., Cherian, B. P., Banting, L., Mills, G. A., & Ngianga, K. (2017). Effectiveness of real-time polymerase chain reaction assay for the detection of Mycobacterium tuberculosis in pathological samples: A systematic review and meta-analysis. Systematic Reviews, 6(1), 1–16. https://doi.org/10.1186/s13643-017-0608-2

Benjamin-Chung, J., Pilotte, N., Ercumen, A., Grant, J. R., Maasch, J. R. M. A., Gonzalez, A. M., Ester, A. C., Arnold, B. F., Rahman, M., Haque, R., Hubbard, A. E., Luby, S. P., Williams, S. A., & Colford, J. M. (2020). Comparison of multi-parallel qPCR and double-slide kato-katz for detection of soil-transmitted helminth infection among children in rural Bangladesh. PLoS Neglected Tropical Diseases, 14(4), 1–23. https://doi.org/10.1371/journal.pntd.0008087

Das, B., Ellis, M., & Sahoo, M. (2024). Veterinary diagnostics: growth, trends, and impact. In M. Suar, N. Misra, & P. K. Singh (Eds.), Evolving Landscape of Molecular Diagnostics: Applications and Techniques (pp. 227–242). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-99316-6.00007-X

Fernández-Carballo, B. L., McGuiness, I., McBeth, C., Kalashnikov, M., Borrós, S., Sharon, A., & Sauer-Budge, A. F. (2016). Low-cost, real-time, continuous flow PCR system for pathogen detection. Biomedical Microdevices, 18(2), 1–10. https://doi.org/10.1007/s10544-016-0060-4

Fleitas, P. E., Vargas, P. A., Caro, N., Almazan, M. C., Echazú, A., Juárez, M., Cajal, P., Krolewiecki, A. J., Nasser, J. R., & Cimino, R. O. (2021). Scope and limitations of a multiplex conventional PCR for the diagnosis of S. stercoralis and hookworms. Brazilian Journal of Infectious Diseases, 25(6), 4–9. https://doi.org/10.1016/j.bjid.2021.101649

Francisca Chibugo Udegbe, Nwankwo, E. I., Geneva Tamunobarafiri Igwama, & Olaboye, J. A. (2023). Real-Time data integration in diagnostic devices for predictive modeling of infectious disease outbreaks. Computer Science & IT Research Journal, 4(3), 525–545. https://doi.org/10.51594/csitrj.v4i3.1502

Garcia, S. N., Osburn, B. I., & Jay-Russell, M. T. (2020). One Health for Food Safety, Food Security, and Sustainable Food Production. Frontiers in Sustainable Food Systems, 4(January), 1–9. https://doi.org/10.3389/fsufs.2020.00001

Gebreyes, W. A., Jackwood, D., de Oliveira, C. J. B., Lee, C.-W., Hoet, A. E., & Thakur, S. (2020). Molecular Epidemiology of Infectious Zoonotic and Livestock Diseases. Microbiology Spectrum, 8(2), 1–21. https://doi.org/10.1128/microbiolspec.ame-0011-2019

Hajia, M. (2018). Limitations of Different PCR Protocols Used in Diagnostic Laboratories: A Short Review. Modern Medical Laboratory Journal, 1(1), 1–6. https://doi.org/10.30699/mmlj17-01-01

Hashim, H. O., & Al-Shuhaib, M. B. S. (2019). Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: A review. Journal of Applied Biotechnology Reports, 6(4), 137–144. https://doi.org/10.29252/JABR.06.04.02

Johnson, G., Nolan, T., & Bustin, S. A. (2013). Real-Time Quantitative PCR, Pathogen Detection and MIQE. In M. Wilks (Ed.), PCR Detection of Microbial Pathogens (pp. 1–16). Humana Press. https://doi.org/https://doi.org/10.1007/978-1-60327-353-4_1

Khurana, S. K., Dhama, K., Prasad, M., Karthik, K., & Tiwari, R. (2015). Zoonotic Pathogens transmitted from Equines: diagnostics and zoonosis. Advances in Animal and Veterinary Sciences, 2(March), 23–36.

Kramme, S., Dähne, T., Fomenko, A., & Panning, M. (2022). Acute Viral Gastrointestinal (GI) Infections in the Tropics—A Role for Cartridge-Based Multiplex PCR Panels? Tropical Medicine and Infectious Disease, 7(5). https://doi.org/10.3390/tropicalmed7050080

Loderstädt, U., Hagen, R. M., Hahn, A., & Frickmann, H. (2021). New developments in pcr-based diagnostics for bacterial pathogens causing gastrointestinal infections—a narrative mini-review on challenges in the tropics. Tropical Medicine and Infectious Disease, 6(2). https://doi.org/10.3390/tropicalmed6020096

Neethirajan, S. (2017). Recent advances in wearable sensors for animal health management. Sensing and Bio-Sensing Research, 12, 15–29. https://doi.org/10.1016/j.sbsr.2016.11.004

Neethirajan, S., Ragavan, K. V., & Weng, X. (2018). Agro-defense: Biosensors for food from healthy crops and animals. Trends in Food Science and Technology, 73, 25–44. https://doi.org/10.1016/j.tifs.2017.12.005

Newell, D. G., & La Ragione, R. M. (2018). Enterohaemorrhagic and other Shiga toxin-producing Escherichia coli (STEC): Where are we now regarding diagnostics and control strategies? Transboundary and Emerging Diseases, 65(May 2017), 49–71. https://doi.org/10.1111/tbed.12789

Pawar, S., Shinde, R., & Shinde, A. R. (2024). Zoonotic Pathogens in Wildlife Surveillance, Transmission Dynamics, and Public Health Risks of Infectious Diseases Transmitted between Animals and Humans. African Journal of Biological Sciences (South Africa), 6, 2559–2568. https://doi.org/10.33472/AFJBS.6.Si2.2024.2559-2568

Pesapane, R., Ponder, M., & Alexander, K. A. (2013). Tracking pathogen transmission at the human-wildlife interface: Banded mongoose and Escherichia coli. EcoHealth, 10(2), 115–128. https://doi.org/10.1007/s10393-013-0838-2

Petralia, S., & Conoci, S. (2017). PCR technologies for point of care testing: Progress and perspectives. ACS Sensors, 2(7), 876–891. https://doi.org/10.1021/acssensors.7b00299

Quan, P. L., Sauzade, M., & Brouzes, E. (2018). dPCR: A technology review. Sensors (Switzerland), 18(4). https://doi.org/10.3390/s18041271

Reiter, M., & Pfaffl, M. W. (2011). RT-PCR Optimization Strategies. In PCR Troubleshooting and Optimization: The Essential Guide (pp. 97–118).

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104(July), 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Sreejith, K. R., Ooi, C. H., Jin, J., Dao, D. V., & Nguyen, N. T. (2018). Digital polymerase chain reaction technology-recent advances and future perspectives. Lab on a Chip, 18(24), 3717–3732. https://doi.org/10.1039/c8lc00990b

Unruh, L. A. H., Crone, M. A., Freemont, P. S., & Chindelevitch, L. (2024). A standardised, high-throughput approach to diagnostic group testing method validation. MedRxiv, 1–12.

van Seventer, J. M., & Hochberg, N. S. (2016). Principles of Infectious Diseases: Transmission, Diagnosis, Prevention, and Control. International Encyclopedia of Public Health, January, 22–39. https://doi.org/10.1016/B978-0-12-803678-5.00516-6

Váradi, L., Luo, J. L., Hibbs, D. E., Perry, J. D., Anderson, R. J., Orenga, S., & Groundwater, P. W. (2017). Methods for the detection and identification of pathogenic bacteria: Past, present, and future. Chemical Society Reviews, 46(16), 4818–4832. https://doi.org/10.1039/c6cs00693k

Vasala, A., Hytönen, V. P., & Laitinen, O. H. (2020). Modern Tools for Rapid Diagnostics of Antimicrobial Resistance. Frontiers in Cellular and Infection Microbiology, 10(July). https://doi.org/10.3389/fcimb.2020.00308

Vidic, J., Manzano, M., Chang, C. M., & Jaffrezic-Renault, N. (2017). Advanced biosensors for detection of pathogens related to livestock and poultry. Veterinary Research, 48(1), 1–22. https://doi.org/10.1186/s13567-017-0418-5

Yang, S., & Rothman, R. E. (2004). PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. The Lancet - Infectious Diseases, 4, 337–348. https://doi.org/10.1016/j.coldregions.2013.09.003

Zhang, L., Guo, W., & Lv, C. (2024). Modern technologies and solutions to enhance surveillance and response systems for emerging zoonotic diseases. Science in One Health, 3(December 2023), 100061. https://doi.org/10.1016/j.soh.2023.100061

Zhu, H., Zhang, H., Xu, Y., Laššáková, S., Korabečná, M., & Neužil, P. (2020). PCR past, present and future. BioTechniques, 69(4), 317–325. https://doi.org/10.2144/BTN-2020-0057

Downloads

Published

2025-01-27

Issue

Section

Articles