Analisis Hubungan Kawasan Perairan Darat Perkotaan Terhadap Suhu Permukaan

Isi Artikel Utama

Muhammad Rais Abidin
Ramli Umar
Rahmi Nur
Andi Arham Atjo
Ahyani Mirah Liani
Imam Muhajir Utama

Abstrak

Pemanasan global adalah fenomena yang telah merubah tatanan kehidupan manusia salah satunya adalah menurunkan kualitas lingkungan kota termasuk Kota Makassar dimana dampak yang paling dirasakan adalah penurunan kenyamanan kota. Tujuan penelitian ini adalah mengidentifikasi hubungan keberadaan badan air terhadap laju suhu permukaan di kawasan perkotaan. Metode penelitian untuk analisa kawasan perairan darat adalah dengan algoritma Modified Normalized Difference Water Index (MNDWI), sedangkan analisa suhu menggunakan algoritma Land Surface Temperature (LST). Hasil penelitian menunjukkan bahwa kawasan yang memiliki nilai kebasahan atau MNDWI tinggi sampai sedang atau nilai positif seperti badan air memiliki suhu permukaan yang lebih rendah yaitu 180C sampai 270C, sedangkan wilayah yang memiliki kebasahan rendah atau nilai negatif seperti lahan terbuka dan kawasan terbangun memiliki suhu permukaan yang lebih tinggi yaitu 230C sampai 370C. Hal ini mengindikasikan bahwa kawasan perairan darat mampu menekan laju suhu permukaan di areal perkotaan.

Rincian Artikel

Bagian
Articles

Referensi

Abidin, M. R., Umar, R., Nur, R., Atjo, A. A., Yanti, J., Liani, A. M. (2023). Identifikasi perubahan kawasan terbangun perkotaan menggunakan citra Landsat series. Teknosains: Media Informasi Dan Teknologi, 17, 335–340.

Abidin, M. R., & Arfan, A. (2019). Detection of Development and Density Urban Build-Up Area with Satellite Image Overlay. International Journal of Environment, Engineering and Education, 1(2), 40–45. https://doi.org/10.55151/ijeedu.v1i2.12

Abidin, M. R., Nur, R., Mayzarah, E. M., & Umar, R. (2021). Estimating and Monitoring the Land Surface Temperature (LST) Using Landsat OLI 8 TIRS. International Journal of Environment, Engineering and Education, 3(1), 17–24. https://doi.org/10.55151/ijeedu.v3i1.43

Abidin, M. R., Umar, R., S. Tabbu, M. A., & Haris, H. (2023). Penyerapan Emisi Gas Karbon Dioksida (CO2) Dalam Menganalisis Kecukupan Ruang Terbuka Hijau (RTH) Pada Kawasan Center Point Of Indonesia (CPI) Kota Makassar. Indonesian Journal of Fundamental and Applied Geography, 01, 18–25. https://doi.org/10.61220/ijfag.v1i1.202303

Ali, M. I., Dirawan, G. D., Hasim, A. H., & Abidin, M. R. (2019). Detection of changes in surface water bodies urban area with NDWI and MNDWI methods. International Journal on Advanced Science, Engineering and Information Technology, 9(3), 946–951. https://doi.org/10.18517/ijaseit.9.3.8692

Fadlin, F., Kurniadin, N., Astrolabe Sian Prasetya, F. (2020). Analisis Indeks Kekritisan Lingkungan Di Kota Makassar Menggunakan Citra Satelit Landsat 8 Oli/Tirs. Jurnal Elipsoida, 3(1), 55–63.

Guha, S., & Govil, H. (2021). Relationship between land surface temperature and normalized difference water index on various land surfaces: A seasonal analysis. International Journal of Engineering and Geosciences, 6(3), 165–173. https://doi.org/10.26833/ijeg.821730

Gupta, N., Mathew, A., & Khandelwal, S. (2019). Analysis of cooling effect of water bodies on land surface temperature in nearby region: A case study of Ahmedabad and Chandigarh cities in India. Egyptian Journal of Remote Sensing and Space Science, 22(1), 81–93. https://doi.org/10.1016/j.ejrs.2018.03.007

Imam Syafii, N., Ichinose, M., Kumakura, E., Jusuf, S. K., Chigusa, K., & Wong, N. H. (2017). Thermal environment assessment around bodies of water in urban canyons: A scale model study. Sustainable Cities and Society, 34(June), 79–89. https://doi.org/10.1016/j.scs.2017.06.012

Khan, N., Shahid, S., Chung, E. S., Kim, S., & Ali, R. (2019). Influence of surface water bodies on the land surface temperature of Bangladesh. Sustainability (Switzerland), 11(23). https://doi.org/10.3390/su11236754

Maru, R., & Ahmad, S. (2015). The relationship between land use changes and the urban heat Island phenomenon in Jakarta, Indonesia. Advanced Science Letters, 21(2), 150–152. https://doi.org/10.1166/asl.2015.5842

Moyer, A. N., & Hawkins, T. W. (2017). River effects on the heat island of a small urban area. Urban Climate, 21, 262–277. https://doi.org/10.1016/j.uclim.2017.07.004

Sahile, W. T., Goshem, G. K., Shifaw, S. A., & Abidin, M. R. (2023). Analysis of Land Surface Temperature Distribution in Response to Land Use Land Cover Change in Agroforestry Dominated Area, Gedeo Zone, Southern Ethiopia. International Journal of Environment, Engineering and Education, 5(1), 19–26. https://doi.org/10.55151/ijeedu.v5i1.98

Umar, R., Abidin, M. R., & Darwis, M. R. (2021). Identifikasi Kawasan Perairan Dengan Metode Automated Water Extraction Index ( AWEI ). 326–334.

Umar, R., Abidin, M. R., Nur, R., Atjo, A. A., & Liani, A. M. (2022). Analisis pengaruh ruang terbuka hijau (RTH) terhadap suhu permukaan. Teknosains: Media Informasi Sains dan Teknologi, 16(3), 423–430.

Umar, R., Abidin, M. R., Nur, R., Atjo, A. A., Liani, A. M., Yanti, J., & Utama, I. M. (2022). Penentuan Prioritas Ruang Terbuka Hijau Menggunakan Metode Weighted Overlay. Jurnal Geosains Dan Remote Sensing (JGRS), 3(2), 88–94.

Umar, R., Abidin, R., Qaiyimah, D., Darwis, R., Nur, R., Atjo, A. A., Syamsunardi, S., & Yanti, J. (2021). Analisis Suhu Permukaan Kota Makassar Sebelum Dan Selama Masa Pandemi Covid-19. Jurnal Environmental Science, 4(1). https://doi.org/10.35580/jes.v4i1.23475

Wang, Y., Zhan, Q., & Ouyang, W. (2019). How to quantify the relationship between spatial distribution of urban waterbodies and land surface temperature? Science of the Total Environment, 671, 1–9. https://doi.org/10.1016/j.scitotenv.2019.03.377

Wu, Z., & Zhang, Y. (2019). Water bodies’ cooling effects on urban land daytime surface temperature: Ecosystem service reducing heat island effect. Sustainability (Switzerland), 11(3), 1–11. https://doi.org/10.3390/su11030787

Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179