INTEGRASI TEKNOLOGI PENGINDERAAN JAUH DAN MACHINE LEARNING PADA WEB GIS UNTUK PEMETAAN POTENSI BANJIR

Authors

  • Putu Ony Andewi Fakultas Teknik dan Kejuruan, Universitas Pendidikan Ganesha
  • Ketut Agus Seputra Fakultas Teknik dan Kejuruan Universitas Pendidikan Ganesha
  • Kadek Yota Ernanda Aryanto Fakultas Teknik dan Kejuruan, Universitas Pendidikan Ganesha
  • Luh Joni Erawati Dewi Fakultas Teknik dan Kejuruan, Universitas Pendidikan Ganesha

DOI:

https://doi.org/10.23887/jptkundiksha.v22i1.87455

Keywords:

Satelite Imagery, Google Earth Engine, Random Forest, Web GIS

Abstract

Flooding is a natural phenomenon that has frequently posed significant challenges in various regions of Indonesia, driven by factors such as rainfall, river conditions, upstream landscapes, land use patterns, and sea-level rise. These events often lead to severe consequences, including the spread of waterborne diseases, destruction of infrastructure, depletion of natural resources, and economic disruption. One proactive measure to mitigate such impacts is mapping potential flood risk areas. This study utilized Landsat 8 satellite imagery Level 2, Collection 2, Tier 1 processed on the Google Earth Engine (GEE) platform to derive indices such as the Digital Elevation Model (DEM), Topographic Position Index (TPI), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI). These indices served as input variables for a Random Forest model, classifying areas into high, medium, and low flood risk categories. The developed model achieved 86% accuracy when evaluated using a confusion matrix, with precision, recall, and F1-score metrics validating its performance. The integration of this model into a WebGIS service was implemented through Flask, offering an API that supports real-time flood risk data retrieval by third-party applications. The front-end interface, built using LeafletJS, provides an interactive and user-friendly map visualization of flood risk levels. The results demonstrate that the Random Forest model effectively classifies flood risk, while the WebGIS service offers a practical tool for visualizing and disseminating flood risk information. This service has the potential to support disaster management efforts and enhance community preparedness against flooding.

References

Dedi Hermon, “Geografi Bencana Alam.” Accessed: Feb. 24, 2024. [Online]. Available: https://books.google.co.id/books?hl=en&lr=&id=GgDeEAAAQBAJ&oi=fnd&pg=PA1&dq=buku+dedi+hermon+Geografi+Bencana+Alam&ots=8KozWt7w5U&sig=w6x-iveSZrEiZ-7SZ4d4UstuCfo&redir_esc=y#v=onepage&q&f=false

Dino, “Banjir: Pengertian, Penyebab, dan Dampaknya,” web.bpbd.jatimprov.go.id. Accessed: Feb. 24, 2024. [Online]. Available: https://web.bpbd.jatimprov.go.id/2023/10/19/banjir-pengertian-penyebab-dan-dampaknya/

B. E. Cahyono, E. Ikke, S. Putri, and A. T. Nugroho, “Pemetaan Daerah Genangan Banjir dan Keterkaitan dengan Penggunaan Lahan , Jenis Tanah dan Curah Hujan di Kabupaten Konawe Utara Flooded Area Mapping and Its Relationship to the Land Use , Soil Type , and Rainfall in North Konawe Regency,” vol. 23, no. 2, pp. 93–100, 2022.

A. Sukmono, A. L. Nugraha, M. Awaluddin, F. Janu, and S. D. Kirana, “Pendampingan Penyusunan Peta Kelurahan Berbasis WebGIS Untuk Penunjang Pembangunan Bagi Pemerintah Kelurahan Rowosari , Kota Semarang,” vol. 4, no. 1, pp. 21–28, 2021.

G. E. Engine, “Meet Earth Engine.” Accessed: Feb. 26, 2024. [Online]. Available: https://earthengine.google.com/

Tarubali, “Sekilas Bali,” tarubali.baliprov.go.id/. Accessed: Feb. 26, 2024. [Online]. Available: https://tarubali.baliprov.go.id/sekilas-bali/

Pusdalops, “Informasi Bencana Bulanan Provinsi Bali Periode 1 Januari - 25 Februari 2023,” bpbd.baliprov.go.id. Accessed: Apr. 20, 2024. [Online]. Available: https://bpbd.baliprov.go.id/article/2933/informasi-bencana-bulanan-provinsi-bali-periode-1-januari-25-februari-2023

Pusdalops, “Informasi Bencana Bulanan Provinsi Bali,” bpbd.baliprov.go.id. Accessed: Apr. 20, 2024. [Online]. Available: https://bpbd.baliprov.go.id/article/3182/informasi-bencana-bulanan-provinsi-bali

N. Sugandhi and H. Rakuasa, “Utilization of Geogle Earth Engine for Flood Hazard Analysis in DKI Jakarta Province,” vol. 1, no. 02, pp. 41–49, 2023.

B. Laurensz, F. Lawalata, and S. Y. J. Prasetyo, “Potensi Resiko Banjir dengan Menggunakan Citra Satelit (Studi Kasus : Kota Manado, Provinsi Sulawesi Utara),” 2019.

A. Y. Isnaen and S. Y. J. Prasetyo, “Klasifikasi Wilayah Potensi Risiko Kerusakan Lahan Akibat Bencana Tsunami Menggunakan Machine Learning,” vol. 8, no. April, pp. 33–42, 2022.

M. V. A. Wadud, E. Hermawan, and N. Kamilah, “Analisis Pola Distribusi Spasial Perubahan Penggunaan Lahan Dan Urban Heat Island Menggunakan Google Earth Engine,” vol. 9, no. 1, pp. 259–269, 2023.

N. E. Kın, “Statistics of Confusion Matrix.” Accessed: Feb. 28, 2024. [Online]. Available: https://medium.com/machine-learning-türkiye/statistics-of-confusion-matrix-d762eaf53f74

A. N. Fauziah, “ANALISIS SENTIMEN MENGGUNAKAN NAÏVE BAYES CLASSIFIER DAN INSET LEXICON PADA TWITTER ( Studi Kasus : Mie Gacoan ) PADA TWITTER ( Studi Kasus : Mie Gacoan ),” 2023.

M. S. Anggreany, “Confusion Matrix,” socs.binus.ac.id/. Accessed: Feb. 27, 2024. [Online]. Available: https://socs.binus.ac.id/2020/11/01/confusion-matrix/

Ramadhan, Indonesia. Flood Hazard Mapping in Earth Engine, (2023). [Online]. Available: https://www.youtube.com/watch?v=35-YGQzxSzE&list=LL&index=13&t=26s

T. Mahesti, K. D. Hartomo, S. Yulianto, and J. Prasetyo, “Penerapan Algoritma Random Forest dalam Menganalisa Perubahan Suhu Permukaan Wilayah Kota Salatiga,” vol. 6, pp. 2074–2085, 2022, doi: 10.30865/mib.v6i4.4603.

J. Hu and S. Szymczak, “A Review on Longitudinal Data Analysis with Random Forest,” vol. 24, no. January, pp. 1–11, 2023.

M. Habibi, “Definisi, Komponen dan Manfaat Remote Sensing,” www.technogis.co.id. Accessed: Apr. 20, 2024. [Online]. Available: https://www.technogis.co.id/definisi-komponen-dan-manfaat-remote-sensing/

A. Juantoro and N. Ratama, “Sistem Notifikasi Monitoring Server Pada BOT Telegram Menggunakan Cronjob Berbasis Web ( Studi Kasus : PT . Ekanuri Group ),” vol. 1, no. 12, pp. 2346–2351, 2022.

Downloads

Published

2025-01-30