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A	B	S	T	R	A	CT	
Studi	 tentang	 fungsional	 aditif	 ortogonal	 lemah	 mempunyai	 dampak	 terhadap	
sifat-sifat	 struktural	 dari	 suatu	 ruang	 fungsi	 dan	 memungkinkan	 penyelidikan	
lebih	lanjut	mengenai	penyelesaian	masalah-masalah	matematika	yang	lebih	luas.	
Tujuan	 penelitian	 ini	 adalah	 untuk	 menyelidiki	 sifat-sifat	 dan	 aplikasi	 dari	
fungsional	aditif	ortogonal	lemah	pada	ruang	fungsi	terintegral	McShane-Bochner	
yang	didefinisikan	di	dalam	ruang	Euclide	ℛ!.	Metode	penelitian	yang	digunakan	
adalah	 Research	 and	 Development	 (R&D).	 Penelitian	 ini	 diawali	 dengan	
melakukan	 analisis	 pendahuluan	 melalui	 studi	 pustaka,	 kemudian	 mengujikan	
teori,	 melakukan	 evaluasi,	 dan	 pengambilan	 simpulan.	 Setelah	 itu,	 dilakukan	
pengujian	 teori	 yang	 telah	 dikembangkan	 melalui	 kegiatan	 Focus	 Group	
Discussion.	 Penelitian	 ini	 berhasil	 mengkonstruksi	 suatu	 ruang	 fungsi	 yang	
merupakan	 koleksi	 dari	 fungsi-fungsi	 yang	 terintegral	 McShane-Bochner	 yang	
didefinisikan	pada	sel	"𝑎$		𝑏	'(	di	dalam	ruang	Euclide	ℛ!	yang	memenuhi	sifat-sifat	
tertentu.	Berdasarkan	 ruang	 fungsi	 tersebut,	 selanjutnya	dikonstruksi	Teorema	
Representasi	 untuk	 fungsional	 aditif	 ortogonal	 lemah	 yang	 didefinisikan	 pada	
ruang	fungsi	yang	baru	dikonstruksi	tersebut.	
	
	
	A	B	S	T	R	A	C	T	
The	 study	 of	 weakly	 orthogonal	 additive	 functionals	 has	 an	 impact	 on	 the	
structural	properties	of	 function	space	and	allows	further	 investigation	into	the	

solution	 of	 broader	mathematical	 problems.	 This	 research	 aimed	 to	 investigate	 the	 properties	 and	 applications	 of	
weakly	orthogonal	additive	functionals	on	the	space	of	McShane-Bochner	integrable	functions	defined	in	the	Euclidean	
space	ℛ!.	Research	and	Development	(R&D)	method	was	utilized	in	this	study.	This	research	began	by	conducting	a	
preliminary	 analysis	 through	 a	 literature	 study,	 then	 testing	 the	 theory,	 conducting	 an	 evaluation,	 and	 drawing	
conclusions.	 After	 that,	 the	 developed	 theory	was	 tested	 through	 Focus	 Group	Discussion	 activities.	 This	 research	
succeeded	in	constructing	a	function	space	which	is	a	collection	of	McShane-Bochner	integral	functions	defined	in	the	
cell	"𝑎$		𝑏	'(	in	the	Euclidean	space	ℛ!	which	fulfilled	certain	properties.	Based	on	this	function	space,	the	Representation	
Theorem	 for	 the	weakly	orthogonal	 additive	 functionals	defined	 in	 the	newly	 constructed	 function	 space	was	 then	
constructed.	
	
1. INTRODUCTION	

The	topic	of	operators	in	function	spaces	or	vector	spaces	is	very	interesting	to	research	because	
operator	theory	has	many	applications,	both	in	mathematics	and	in	other	fields	such	as	physics,	chemistry,	
biology,	computer	science	and	engineering,	or	other	engineering	sciences.	One	of	the	important	things	is	to	
provide	 necessary	 and	 sufficient	 conditions	 for	 vector-valued	 composition	 operators	 in	 Hardy	 spaces	
(Blasco,	2020).	In	addition,	it	can	be	used	to	solve	optimization	problems	and	integral	problems	by	utilizing	
the	Dunford	integral	(Solikhin	et	al.,	2019).		

It	is	not	known	exactly	when	this	topic	began	to	be	researched,	but	it	began	to	be	widely	researched	
around	the	1970s.	Operator	theory	is	developing	very	quickly	and	many	new	theories	have	been	produced	
by	mathematicians.	Recently,	 one	of	 the	 interesting	 topics	 to	 research	 is	orthogonal	 additive	operators.	
Several	 researchers	 have	 developed	 this	 topic	 such	 as	 Sundaresan	 who	 researched	 orthogonality	 and	
nonlinear	 functionals	 on	 Banach	 spaces	 (Sundaresan,	 1972)	 which	 discussed	 the	 characterization	 of	
additive	orthogonality	operators	in	Banach	space,	Gumenchuk	who	researched	the	expansion	of	orthogonal	
additive	operators	in	lattice	vector	spaces	(Gumenchuk	et	al.,	2014),	Seng	who	researched	about	orthogonal	
additive	operators	 (Chew,	1985),	Lee	who	researched	orthogonal-polynomials-based	 integral	 inequality	
(Lee	et	al.,	2018).	Pliev	and	Weber	who	researched	C-compact	orthogonally	additive	operators	 (Pliev	&	
Weber,	 2021),	 and	 Feldman	 conducted	 research	 on	 factorization	 for	 orthogonal	 additive	 operators	 on	
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Banach	Lattice	 (Feldman,	 2019).	Orthogonal	 additive	 operator	 topics	 that	 are	widely	 discussed	 include	
orthogonally	 additive	 operators	 in	 lattice-normed	 (Getoeva	&	Pliev,	 2015;	Abasov	&	Pliev,	 2017,	 2019;	
Wang	et	al.,	2019),	on	orthogonally	additive	functions	with	big	graphs	(Baron,	2017),	the	lateral	order	on	
Riesz	 spaces	 and	 orthogonally	 additive	 operators	 (Mykhaylyuk	 et	 al.,	 2021),	 domination	 problem	 for	
narrow	orthogonally	additive	operators	(Pliev,	2017),	orthogonal	Birkhoff	preserving	additive	operators	
(Guo,	2019),	 and	 special	 classes	orthogonal	 additive	operators	 (Abasov	&	Pliev,	 2019;	Maslyuchenko	&	
Popov,	2019;	Fotiy	et	al.,	2020;	Abasov,	2020).		

Research	 in	 the	 field	of	 functional	analysis,	 especially	 function	spaces,	 is	 an	 interesting	 topic	 in	
modern	 mathematics.	 The	 previous	 research	 explored	 semi-analytic	 solutions	 for	 non-linear	 Volterra	
fractional	 integro-differential	 equations	 using	 the	 Laplace	 Adomian	 decomposition	 method.	 The	 key	
findings	demonstrate	that	this	method	is	an	effective	tool	for	solving	these	types	of	equations	(Alrabaiah	et	
al.,	2020).		Another	study	examined	the	application	of	integral	transforms	to	nonlinear	dynamic	models	with	
non-integer	 order	 derivatives.	 The	 research	 resulted	 in	 a	 modified	 Laplace-type	 integral	 transform	
combined	with	Adomian's	approach	to	analyze	nonlinear	evolution	equations	with	non-integer	derivatives	
(Nuruddeen	 et	 al.,	 2022).	 A	 method	 for	 fully	 discrete	 convergence	 analysis	 of	 non-linear	 hyperbolic	
equations	using	 finite	element	analysis	 is	proposed.	By	using	second-order	and	 fourth-order	non-linear	
hyperbolic	equations	as	examples,	the	study	analyzes	the	full	discrete	convergence	of	these	equations	with	
the	finite	element	method,	achieving	super-convergence	results	(Zhang,	2019).	

Moreover,	 developing	 concepts	 and	 theories	 in	 function	 spaces	 is	 an	 important	 step	 in	
understanding	the	properties	of	functions	and	the	relationships	between	mathematical	objects	that	arise	in	
that	context.	One	interesting	topic	to	research	is	weakly	orthogonal	additive	functionals	in	the	McShane-
Bochner	 function	 space.	This	 functionals	 refers	 to	 a	mapping	 that	maintains	 the	 additive	 structure	 and	
orthogonality	among	the	functions	in	that	space.	The	study	of	weakly	orthogonal	additive	functionals	has	
implications	 for	 the	 structural	 properties	 of	 function	 spaces	 and	 allows	 further	 investigation	 of	 the	
application	of	such	concepts	and	properties	to	broader	mathematical	problems.	Weakly	orthogonal	additive	
functionals	has	an	important	role	in	harmonic	analysis	and	function	theory.	Therefore,	its	properties	and	
characteristics	can	contribute	to	the	development	of	functional	theory	and	its	applications	in	a	more	general	
functional	space.	

The	topic	of	weakly	orthogonal	additive	functionals	in	Mcshane-Bochner	integral	functional	spaces	
has	never	been	developed.	Therefore,	the	researchers	are	interested	in	researching	this	topic.	This	research	
is	 a	 development	 of	 the	 research	 results	 of	 Rosinski	 and	Woyczynski	 (Rosinski	 &	Woyczynski,	 1977),	
especially	the	development	of	a	weakly	orthogonal	additive	functional	representation	which	was	originally	
defined	 on	 a	 Lebesgue	 integral	 function	 space	 on	 the	 interval	 [𝑎	𝑏]	in	 a	 straight	 line,	 generalized	 to	 a	
function	space	that	McShane-Bochner	integral	defined	on	the	cell	'𝑎(		𝑏	)*	in	the	Euclidean	space	ℛ!.		

This	 research	 aims	 to	 further	 investigate	 the	 properties	 and	 applications	 of	weakly	 orthogonal	
additive	functionals	on	McShane-Bochner	integrable	functional	spaces	defined	in	Euclidean	space.	A	deeper	
understanding	of	 these	 functional	properties	 is	expected	to	contribute	 to	 the	development	of	 functional	
analysis	and	 its	applications	 in	various	applied	mathematical	 contexts.	 In	addition,	 this	 research	 is	also	
directed	at	expanding	the	scope	of	knowledge	concerning	the	McShane-Bochner	function	space,	which	is	an	
increasingly	important	research	topic	in	the	development	of	modern	functional	analysis.	

Given	𝒪	a	collection	of	all	open	intervals	in	ℛ!,	then	the	outer	measure	of	any	set	𝐸 ⊂ ℛ!	s	a	non-
negative	expanded	real	number	𝜇"∗ (𝐸)	with:	

	𝜇"∗ (𝐸)= {inf∑ 𝛼(𝐼$):%
$&' 𝐼$ ∈ 𝒪		for	each	𝑖	such	that			𝐸 ⊂ 	⋃ 𝐼$%

$&' }	
provided	the	infimum	exists.	If	the	infimum	does	not	exist,	then	the	set	𝐸	is	said	to	be	unmeasurable.	In	this	
case	𝛼(𝐼$)	denotes	volume	of	𝐼$ 	for	each	𝑖.	

As	in	the	real	number	system	ℛ,	the	collection	of	all-	𝜇"∗ 	measurable	sets	in	ℛ!	forms	the		𝜎-	algebra	
of	 sets,	 and	 is	 denoted	 by	Σ.	 The	 pair	 (ℛ!, Σ)	 is	 called	measurable	 space.	Next,	we	 define	 the	measure	
function	𝜇: Σ → ℛ( 	with	𝜇(𝐸) = 	 	𝜇"∗ (𝐸)		for	each	𝐸 ∈ 	Σ	.	So,	if	𝐸	is	measurable,	then	𝜇(𝐸)	denotes	the	size	of	
the	set	𝐸.	Furthermore,		(ℛ!, 𝛴, 𝜇")	i.e.	the	measurable	space	(ℛ!, 𝛴)	which	is	equipped	with	the	measure	𝜇	
is	called	a	measure	space.	The	measurement	𝜇	is	said	to	be	𝜎	–	finite	if	there	exists	a	sequence	of	measurable	
sets		{𝐸$} 	⊂ 	ℛ!	such	that	ℛ! =	∪$&'% 	𝐸$ 	dan	𝜇(𝐸$) 	< ∞	for	each	𝑖.	

Given	(ℛ!, 𝛴, 𝜇)	space	of	measures	and	let	𝑣	be	the	second	measure	defined	in	the	𝜎 −	algebra	Σ.	If	
𝑣(𝐴) = 0	as	long	as	𝜇(𝐴) = 0,	then	we	say	that		𝑣	is	continuous	absolute	concerning		𝜇		and	written		𝑣 ≪ 𝜇	

Theorem	1.1	(Radon-Nikodym	Theorem	for	Signed	Measures)	(Cheney,	2001).	Given	(ℛ!, 𝛴, 𝜇)	
a	space	of	𝜎	–	finite.	If		𝑣	is	a	signed	measure	that	is	finite	and	absolutely	continuous	with	respect	to	𝜇,	then	
there	exists	a	measurable	function	ℎ	such	that	𝑣(𝐸) = 	∫(ℎ𝑑𝜇	or	every	𝐸 ∈ 𝛴.	

Definition	1.2	 (Pfeffer,	1993)	Given	𝛼	 is	a	volume	 in	cell	𝐸.	The	 function	𝑓: 𝐸 → ℛ	 s	 said	 to	be	
McShane	integrable	on	𝐸	if	there	is	a	number	𝐴	so	that	for	every	number	ℇ > 0	there	is	a	positive	function	
𝛿	on	𝐸	so	that	for	every	McShane	partition	𝛿	–fine		𝒫 = {(𝑥̅, 𝐼)} = {(𝑥̅', 𝐼'), (𝑥̅), 𝐼)),⋯ , (𝑥̅!, 𝐼!)}	on	𝐸	holds	
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|𝐴 − 	𝒫	Σ	𝑓(𝑥̅)𝛼(𝐼)| = |𝐴 − Σ$&'! 𝑓(𝑥̅')𝛼(𝐼$)| < 𝜀	
	
Henceforth,	the	collection	of	all	McShane	integral	functions	in	cell	𝐸	is	symbolized	by	ℳ(𝐸).	
	
Given	𝐸 = '𝑎(		𝑏	)* ⊂ 	ℛ!		is	a	cell	and	ℛ	denotes	the	real	number	system.	The	function	𝑠: 𝐸 → ℛ	is	

said	to	be	a	simple	function	if	there	are	𝑐', 𝑐)⋯, 𝑐!	∈ ℛ		and	𝐴', 𝐴)⋯,𝐴!	subsets	of	𝐸	that	are	measurable	
with	𝐴$ ∩ 𝐴* = 	∅	for		𝑖	 ≠ 𝑗	so	that:	𝑠 = Σ$&'! 	𝑐$𝜒𝐴$ ,	where	𝜒𝐴$ 	is	the	characteristic	function	on	𝐴$ 	for	each	𝑖	
.	

Theorem	 1.3	 (Indrati,	 2002)	 Given	 that	 𝐸 = '𝑎(		𝑏	)* ⊂ 	ℛ!.	 If	 𝑓 ∈ 	ℳ(𝐸),	 then	 there	 exists	 a	
sequence	of	simple	functions	{𝑠!}	on	𝐸	so	that			𝑠!(𝑥̅) → 	𝑓(𝑥̅)			almost	everywhere	on	𝐸	for	𝑛 → ∞	and	it	
holds	𝑙𝑖𝑚!→%	∫(𝑠!𝑑𝛼 = ∫(𝑓𝑑𝛼.	

2. METHODS	

This	research	is	categorized	into	Research	and	Development	(R&D)	development	research.	Borg	
and	Gall	(2003)	outlined	the	definition	of	research	and	development	as	follows:	

“R&D	is	an	industry-based	development	model	in	which	the	findings	of	research	are	used	to	design	
new	products	and	procedures,	which	then	are	systematically	field-tested,	evaluated,	and	refined	until	they	meet	
specified	criteria	of	effectiveness,	quality,	or	similar	standards”.		

This	research	aimed	to	develop	a	new	theory.	This	research	began	by	conducting	a	preliminary	
analysis	 through	 a	 literature	 study,	 then	 testing	 the	 theory,	 carrying	 out	 evaluations,	 and	 drawing	
conclusions	 (Prakisya	 et	 al.,	 2022).	 Literature	 studies	 are	 carried	 out	 by	 reviewing	 concepts	 and	 the	
structural	properties	of	certain	concepts	through	books,	journals,	papers,	and	bulletins	related	to	research	
problems	(Agung	Saputro	et	al.,	2018;	Luthfiani	et	al.,	2019).	In	general,	this	research	was	carried	out	by	
studying	in-depth	basic	theories	to	the	most	recent	theories.	Observations	were	focused	on	the	structure	of	
a	concept,	theorems,	and	examples.	Then	the	theory	development	was	carried	out	and	tested	using	a	Focus	
Group	Discussion.	The	FGD	functioned	to	generate	new	ideas	to	construct	new,	more	general,	and	basic	
theories	as	well	as	receive	comments	and	input	from	several	experts	(O.Nyumba	et	al.,	2018).	The	Focus	
Group	Discussion	was	conducted	by	mathematics	experts	in	Indonesia,	namely	mathematics	lecturers	from	
various	universities	in	Indonesia,	and	was	attended	by	30	experts.	Testing	the	truth	of	these	new	theories	
was	done	through	deductive	proof.	

3. RESULTS	AND	DISCUSSION	

RESULTS	
Given	𝐸 = '𝑎(		𝑏	) * ⊂ 	ℛ!	a	cell	and	𝐵	a	Banach	space	with	norm	‖∙‖, .		The	function	𝑓: 𝐸 → 𝐵	is	called	

a	simple	function	if	there	are	vectors	𝑐', 𝑐)⋯, 𝑐!	∈ 𝐵	and	𝐴', 𝐴)⋯,𝐴!	,	namely	sets	of	measurable	subsets	
of	𝐸	whose	pairs	are	mutually	exclusive	with	∪$&'! 𝐴$ = 𝐸	so		

𝑓 =n𝑐$𝜒𝐴$

!

$&'

	

with	𝜒𝐴$ 	(𝑥̅) = 1	if	𝑥̅ 	 ∈ 	𝐴$ 	and	0	for	others.	
The	 function	 𝑓: 𝐸 → 𝐵			is	 called	 strongly	 measurable	 if	 there	 exists	 a	 sequence	 of	 simple	

measurable	functions	{𝑠!}			such	that	
∥ 𝑠!	(𝑥̅) − 𝑓	(𝑥̅) ∥	→ 0	𝑎𝑠	𝑛	 → 	∞		

for	almost	all	𝑥̅ 	 ∈ 𝐸	
	
Definition	3.1	Given			𝐸 = '𝑎(		𝑏	)* ⊂ 	ℛ!	a	cell,	and	(𝐵, ‖∙‖,)	a	Banach	space.	
The	function	𝑓: 𝐸 → 𝐵	is	said	to	be	McShane-Bochner	integrable	on	𝐸		if	there	exists	a	vector	𝐴	 ∈

		𝐵	such	that	for	every	ℇ > 0	there	is	a	positive	function	𝛿	on		𝐸	such	that	for	every	𝛿-fine	McShane	partition	
𝒫 = qr𝐼, 𝜉̅tu	on	𝐸,	it	applies		

∥ 	𝒫	n𝑓( 𝜉̅)	𝛼(𝐼) − 	𝐴 ∥	< 𝜀	

Definition	3.2	Given	𝐸 = '𝑎(		𝑏	)* 	⊂ 	ℛ!	a	cell,	(𝐵, ‖∙‖,)	a	Banach	space	and	𝐵∗	dual	Banach	space	of	
𝐵.	The	function	𝑓: 𝐸 → 𝐵	is	said	to	be	McShane-Bochner-Pettis	integrable	on	𝐸	if	for	every	𝐼 ⊂ 𝐸		there	is	a	
vector	𝐴$ ∈ 𝐵		so	that	for	every	𝜀 > 0	there	is	a	positive	function	𝛿	on	𝐸	so	that	for	every	McShane	partition	
McShane	𝛿	–fine	𝒫 = qr𝐼, 𝜉̅tu	on	𝐸,	it	applies		

|	𝒫	n𝑥∗ v𝑓r𝜉̅tw 𝛼(𝐼) −𝑥∗(𝐴.))	| < 	ℇ			
for	every	𝑥∗ ∈ 𝐵∗.	
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Henceforth,	if	it	is	not	stated	then	what	is	meant	by	‖∙‖	is	‖∙‖, .	
	
Definition	3.3	Given	𝐸 = '𝑎(		𝑏	)*	⊂	ℛ!	a	cell,	and	(𝐵, ‖∙‖,)	a	Banach	space.	The	function	𝑓: 𝐸 → 𝐵	

is	 said	 to	 be	 absolutely	McShane-Bochner	 integrable	 on	𝐸	if	𝑓		and	 ‖𝑓(∙)‖,	 	 are	 respectively	McShane-
Bochner	integrable	and	McShane	integrable	on	𝐸.	

	
Theorem	3.4	(Guoju	&	Schwabik,	2005)	Given	𝐸 = '𝑎(		𝑏	)* ⊂ 	ℛ!	a	cell,	(𝐵, ‖∙‖, 	)	a	Banach	space	

with	norm	‖∙‖, ,	and	 	𝑓: 𝐸 → 𝐵	 a	 function.	 If	𝑓	 is	 a	McShane-Bochner	 integrable	on	𝐸,	 then	‖𝑓(∙)‖,	 is	 a	
McShane	integrable	on	𝐸.	

	
Theorem	3.5	Given	𝐸 = '𝑎(		𝑏	)* ⊂ 	ℛ!	a	cell,	(𝐵, ‖∙‖,)	a	Banach	space,	and	𝑓: 𝐸 → 𝐵	a	function.	If		𝑓	

is	a	McShane-Bochner	integrable	on	𝐸,	then	x𝑥∗r𝑓(∙)tx	McShane-Bochner-Pettis	integrable	on		𝐸	
	
Theorem	 3.6	 	 (Barra,	 1981)	 Given	𝐸 = '𝑎(		𝑏	)* ⊂ 	ℛ!	 a	 cell,	B	 a	 Banach	 space,	 and	 𝑓: 𝐸 → 𝐵	 a	

function.	If		𝑓	is	a	McShane	integrable	on	𝐸,		then	f	is	measurably	strong	on	𝐸.	
In	 the	 following	 discussion,	ℳ𝐵𝒫	(𝐸)	 represents	 the	 collection	 of	 all	 McShane-Bochner-Pettis	

integrable	functions	in	the	cell			𝐸 ⊂ 	ℛ!	
	
Theorem	3.7	Given	𝐸 = '𝑎(		𝑏	) * ⊂ 	ℛ!	,	and	𝑓!, 𝑓: 𝐸 → 𝐵	for	every	𝑛.	
If:	
(i)	𝑓! 	→ 𝑓				almost	everywhere	for	𝑛 → 	∞			and	𝑓! ∈ 	ℳ𝐵𝒫(𝐸)	for	every	𝑛,	
(ii)		∥ 	 𝑓! ∥	≤ 𝑀	almost	everywhere	on		𝐸	for	every	𝑛	and	a	number	𝑀	 ≥ 0,					
	
then	𝑓 ∈ 	ℳ𝐵𝒫	(𝐸)	and	

lim
!→%

	 �� 𝑥∗(𝑓!)
⬚

(
𝑑𝛼 −� 𝑥∗(𝑓)

⬚

(
𝑑𝛼� = 0	

	
Given	 𝑏( = (𝑏', 𝑏)⋯, 𝑏!	) ∈ 	ℛ!,	 next,	 we	write	 𝑏( → 	∞,	 if	 	𝑚𝑖𝑛'0$0!𝑏$ → ∞.	 Furthermore,	 if	𝐸 =

'𝑎(		𝑏	)* ⊂ 	ℛ!	with	𝑏( > 	1( ,	then	𝛼(𝐸) → 	∞	provided	𝑏( → 	∞.	
	

Given	that	𝐸 = '1(	, 𝑏	)* ⊂ ℛ!	a	cell,	(𝐵, ‖∙‖,)	a	Banach	space	and	𝐵∗	dual	Banach	of	𝐵.	Furthermore,	

it	is	also	known	that	𝑓	 ∈	ℳ𝐵𝒫		'1(	, 𝑏	)*	for	every				𝑏( > 		 1( 	,	i.e.	(ℳ𝐵𝒫)	∫'1
23𝑥∗(𝑓)𝑑𝛼		exists	for	every	𝑏( > 		 1(.	

If		𝑙𝑖𝑚23→%		(ℳ𝐵𝒫)	∫'1
23𝑥∗(𝑓)𝑑𝛼	exists,	we	define:	

(ℳ𝐵𝒫)	� 𝑥∗(𝑓)	𝑑𝛼	
	%1

'1
= lim

23→%
(ℳ𝐵𝒫)	� 𝑥∗	(𝑓)	

	23

'1
							

Next,	 we	 write	 𝑓 ∈	ℳ𝐵𝒫⟦1(,∞)		 if	 𝑓	 ∈	ℳ𝐵𝒫'1(		, 𝑏	) *	 for	 every	 𝑏( > 		 1(	 and	 𝑙𝑖𝑚23→%		(ℳ𝐵𝒫)	
∫'1
23𝑥∗(5)	𝑑𝛼	exists.	

	
Definition	3.8	Given	𝐸 =	 '1(		, 𝑏	)* ⊂	ℛ!	a	cell	(𝐵, ‖∙‖,)	a	Banach	space,	𝐵∗	dual	Banach	of	𝐵	and	

			𝑓: 𝐸 → ℛ	is	 a	 McShane-Bochner	 Pettis	 integrable	 function	 on	 cell	𝐸.	 We	 define	 the	 section	 collection			
𝑊7(𝐸)	in	ℳ𝐵𝒫'1,∞)	with:	

𝑊7(𝐸) = {	𝑓 ∈	ℳ𝐵𝒫	(E)	:	 lim
"(()→%

'
"(()∫ |𝑥∗𝑓|	𝑑𝛼 = 0}	⬚

( 	

		
Theorem	3.9		𝑊7(𝐸)	is	a	Banach	space	with	respect	to	the	norm:	

∥ 𝑓 ∥= sup	{
1

𝛼(𝐸)� |𝑥∗(𝑓)x	𝑑𝛼:	𝐸 = '1(		, 𝑏	)*			dengan		𝑏	) > 1	)u		
⬚

(
	

for	each	𝑓 ∈ 		𝑊7(𝐸)	
	

Proof.	It	is	easy	to	show	that	𝑊7(𝐸)	is	a	linear	space	and		∥∙∥	is	the	norm	on			𝑊7(𝐸).	Therefore,	we	
will	only	prove	that		𝑊7(𝐸)	is	a	complete	space.	Given	{	𝑓!}	⊂ 𝑊8(𝐸)	any	Cauchy	sequence,	namely	for	every	
number	𝜀 > 0			there	is	a	natural	number	𝑁'		so	that	if	𝑛,𝑚	 ≥ 	𝑁'		it	applies:	

∥ 𝑓! −		𝑓9 	 ∥	<	
ℇ

"(()
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⟺ sup{ 	{
1

𝛼(𝐸)� |𝑥∗(𝑓! − 𝑓9)x	𝑑𝛼: 𝐸 = 		 '1(		, 𝑏	)*		with			𝑏	) > 1	)u 	< 			
𝜀

𝛼(𝐸)

⬚

(
	

⟺
1

𝛼(𝐸)� |𝑥∗(𝑓! − 𝑓9)|	𝑑𝛼	 < 			
𝜀

𝛼(𝐸)

⬚

(
⟺� |𝑥∗(𝑓! − 𝑓9)|	𝑑𝛼	 < 	𝜀		

⬚

(
	

	
This	means	 that	 for	every	natural	number	𝑚	and	𝑛,			there	exists	 a	number	𝑀9!	 ≥ 0		 such	 that	

|𝑥∗(𝑓9 − 𝑓!)		(𝑥̅)|	≤ 𝑀9!			is	almost	everywhere	in	𝐸.		Therefore,	we	can	choose	a	natural	number			𝑁)		so	
that	𝑚, 𝑛 ≥	𝑁)	then	𝑀9!	 < 	𝜀		Consequently,	if	𝑚,𝑛	 ≥ 	𝑁)	,	it	applies:		

|𝑥∗(𝑓9 − 𝑓!)		(𝑥̅)|	<	𝜀		
for	every	𝜀 > 0.	This	means	that	the	sequence		{𝑥∗𝑓!(𝑥̅)}	is	a	Cauchy	sequence	in	ℛ.	Therefore,	there	is	a	
McShaneBochner-Pettis	 integrable	 function	𝑓	 on	𝐸 = '1(		, 𝑏	)*	with	 	𝑏	) > 1	)so	 that		𝑥∗(𝑓!) → 	𝑥∗(𝑓)	 almost	
everywhere	in	𝐸,	that	is,	for	every	number	𝜀 > 0	there	are	natural	numbers	so	that	if	𝑁;		then	if	𝑛 ≥	𝑁;	it	
applies	|𝑥∗(𝑓! − 𝑓)| < 𝜀.	Based	on	this	inequality,	we	have:	

� |𝑥∗(𝑓! − 𝑓)|𝑑𝛼
⬚

(
< � 	𝜀	𝑑𝛼 = 	𝜀	𝛼	(𝐸)

⬚

(
	

⟺
1

𝛼(𝐸)� |𝑥∗(𝑓! − 𝑓9)|	𝑑𝛼	 < 		𝜀	
⬚

(
	

⟺ sup{
1

𝛼(𝐸)� |𝑥∗(𝑓! − 𝑓)|	𝑑𝛼} 	< 𝜀
⬚

(
	

⟺ ‖𝑥∗(𝑓! − 𝑓)‖ < 𝜀	
In	 other	words,	 the	 sequence	 {𝑥∗(𝑓!)}	 is	 norm	 convergent	 to	 the	 function	𝑥∗(𝑓).	 Furthermore,	

taking	𝑁7 = max{𝑁', 𝑁), 𝑁;}	then,	if	𝑛 ≥	𝑁7	it	holds:	

lim
"(()→%

1
𝛼(𝐸)� |𝑥∗𝑓|	𝑑𝛼	 ≤

⬚

(
lim

"(()→%

1
𝛼(𝐸)� |𝑥∗(𝑓! − 𝑓)|𝑑𝛼

⬚

(
+ lim

"(()→%

1
𝛼(𝐸)�

|𝑥∗(𝑓!)|
⬚

(
𝑑𝛼 < 	𝜀	

for	 every	 number	 𝜀 > 0, this	means	that	 𝑓 ∈ 𝑊7(𝐸).	So	 𝑊7(𝐸)	 is	 a	 complete	 space.	 Therefore,	
𝑊7(𝐸)	is	a	Banach	space		∎	
	

Given	𝐸 = '1(		, 𝑏	)*	⊂	ℛ!	 with	 	𝑏	) > 1(			and	 	ℳ𝐵(𝐸)	 denotes	 the	 collection	 of	McShane-Bochner	
integrable	 	 functions	 in	 cell	 		𝐸.			 The	 sequence	 {𝑓!} ⊂ 	ℳ𝐵(𝐸)				is	 said	 to	 be	 bounded	 convergent	 to	 a	
function	𝑓 ∈ 	ℳ𝐵(𝐸),	if	{𝑓!}			converges	point	by	point	to	the	function	𝑓	almost	everywhere	in	𝐸			and	(𝑓!)	
is	bounded	convergent	almost	everywhere	in	𝐸	.	A	functional	ℱ	defined	on	ℳ𝐵(𝐸)	is	said	to	be	bounded	
continuous	if	ℱ	(𝑓!) 	→ 			ℱ	(𝑓)		for	𝑛	 → 	∞		provided	{𝑓!}		converges	boundedly	to	the	function	𝑓.	
	

Given	𝐸 = '1(		, 𝑏	)*	⊂	ℛ!	with		𝑏	) > 1(			and	𝐵	a	Banach	space.	The	function	𝑘(∙,∙): 𝐸	 × 𝐵	 → 𝐵			is	said	
to	be	a	Caratheodory	function	 if	𝑘(𝑥	) ,	∙)	 is	continuous	for	almost	all	𝑥	) 	∈ 𝐸	and	𝑘(	∙, 𝑡)	 is	measurable	 for	
every	t		∈ 𝐵.	

	
Lemma	3.10	Given	that	𝐸 = '1(		, 𝑏	)* ⊂ ℛ!	with	𝑏	) > 1(, 𝐵		a	Banach	space,	𝐵∗	dual	Banach	of	𝐵	,	and	

	ℳ𝐵(𝐸)		denotes	a	collection	of	functions	the	McShane-Bochner	integrable	on	𝐸	and	ℱ	functional	defined	
on	ℳ𝐵(𝐸).	If		ℱ			is	boundedly	continuous	on	ℳ𝐵(𝐸)	then	ℱ(𝑓	𝑥E)	→	0			as	long	as	𝜇(𝐸) → 0		for	every	𝑓 ∈	
ℳ𝐵(𝐸)					

	
Lemma	3.11	Given	𝐸 = '1(		, 𝑏	)* ⊂ ℛ!	dengan	𝑏	) > 1(	, 𝐵	a	Banach	space,	𝐵∗	dual	Banach	of	𝐵.	If	ℱ	is	

boundedly	continuous	and	orthogonally	additive	functional	on			𝑊8(𝐸),	then	there	is	a	function	𝑘(𝑥	) ,	𝑡)				:	
𝐸	 × 𝐵	 → 𝐵	 so	that	𝑘(𝑥	) ,	𝑡)	 	 is	McShane-Bochner	 integrable	with	respect	 to	𝑥	) 	in	𝐸	 for	every	𝑡	 ∈ 𝐵		with	
𝑘(𝑥	) ,	0)	=	𝜃		for	almost	all	𝑥	) ∈ 𝐸		and	holds:	

ℱ(𝑠) = 	∫(𝑥
∗(k(⋅, 𝑠(⋅)))𝑑𝛼	

for	all	simple	functions	in	E	
	
Proof.	 Since	ℱ	 is	 boundedly	 continuous,	 then	 for	 every	 number	 𝜀 > 0				and	 𝑡	 ∈ 𝐵.	 Given	𝐸 =

'1(		, 𝑏	)* 	⊂ ℛ!		with	𝑏	) > 1(	,	B	a	Banach	space,	𝐵∗dual	Banach	of	𝐵,	𝛿(𝜀, 𝑡) > 0			so	that	if	𝐴 ⊂ 𝐸		with	𝜇(𝐴) 	<
	𝛿(𝜀, 𝑡)	,	then	ℱ(𝑡	𝑥A)	<	𝜀.	In	other	words,	ℱ		as	a	set	function,	is	absolutely	continuous	with	respect	to	𝜇.		
Furthermore,	if	𝐸 =	⋃ 𝐸$%

$&' 	with					𝐸$8	∩			𝐸*8 = 	𝜙				for	i≠ 𝑗,	then	it	holds:	
	

ℱ(𝑡	𝑥E)	= lim
!→%

ℱ (𝑡𝑥 ∪$&'! 𝐸$) = 	 lim!→%∑ ℱ(𝑡𝜒𝐸$!
$&' ) = ∑ ℱ(𝑡𝜒𝐸$%

$&' )	
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This	means	 that	ℱ	 is	 an	 additive	 and	 countable	 set	 function.	 According	 to	 the	Radon-Nikodym	
Theorem,	there	is	a	function	𝑘<∗(⋅)	on	𝐸	so	that	

ℱ(𝑡	𝑥E)	=	∫(𝑘<
∗(⋅)𝑑𝛼	

for	each	𝐸.	
Next,	we	define	a	function	𝑘(𝑥	) ,𝑡)=	𝑘<∗(𝑥	))	for	each	𝑥	) ∈ 	𝐸	and	t	∈	R.	If	𝑡 = 0		so	ℱ(𝑡	𝑥E)	=	ℱ(𝜃) = 0.	Therefore,	
it	holds	∫(𝑘7

∗ = 0			for	every	𝐸.	So	𝑘(𝑥	) ,0)=	𝜃	for	almost	all	𝑥	) 	∈	E				Furthermore,	take	s	any	simple	function	
on	𝐸	i.e.	s(𝑥	)) = 	∑ 𝑡$𝜒𝐸$!

$&' (𝑥	))	where		𝐸$ 	is	a	measurable	set	for	all	i	and	mutually	exclusive	pairs,	and	𝐸 =
⋃ 𝐸$%
$&' ,	then	we	get:	

	

ℱ(𝑠) = 	ℱn𝑡$𝜒𝐸$

!

$&'

=n� 𝑘(⋅, 𝑡$𝜒𝐸$)𝑑𝛼
⬚

(!

!

$&'

	

ℱ(𝑠) = 	n� 𝑘(⋅, 𝑠(⋅))𝑑𝛼
⬚

(!
= � 𝑘(⋅, 𝑠(⋅))𝑑𝛼

⬚

(

!

$&'

	

	
Lemma	is	proven	∎	

	
Lemma	 3.12	 Given	𝐸 = '1(		, 𝑏	)* ⊂ ℛ!	 with	 		 	𝑏	) > 1(	,			𝐵		a	 Banach	 space,	𝐵∗	 dual	 Banach	 of	𝐵,	

ℱ			boundedly	continuous	dan	weakly	orthogonally	additive	functional	on	𝑊7(𝐸),	and	𝑘(𝑥	) ,𝑡):		𝐸	 × 𝐵	 → 𝐵	
function	 obtained	 in	 Lemma	 3.11.	 If	 for	 every	 number	𝛿 > 0	 and	 every	 boundedly	 closed	 interval	𝑃 =
[−𝑎, 𝑎]	with	𝑎 > 0,	we	define	the	numbers:	

𝑊(𝛿; 𝑃; 𝐸) = 𝑠𝑢𝑝	 �∫ |𝑘(∙, 𝑡') − 𝑘(∙, 𝑡))|𝑑𝛼
⬚
( 	:	𝑡', 𝑡) ∈ 𝑃	dan	|𝑡' − 𝑡)|<	𝛿}	

and	

𝑊(𝛿; 𝑃; 𝐸) = sup	{	n𝑊(𝛿; 𝑃; 𝐸)
!

$&'

∶ 	�𝐸$

!

$&'

= 𝐸, 𝐸$8 ∩	𝐸*8 = 𝜙			𝑖 ≠ 𝑗	}	

then	for	every	interval			𝑃, 	𝑙𝑖𝑚	=→7"𝑊(𝛿; 𝑃) = 0	applies	
	
𝐋𝐞𝐦𝐦𝐚	𝟑. 𝟏𝟑	Given	𝐸 = '1(		, 𝑏	)* 		⊂ ℛ!	with	𝑏	) > 1(,				𝐵		Banach	space,	𝐵∗	dual	Banach	of		B.	If	ℱ	is	

a	 boundedly	 continuous	 and	 weakly	 orthogonally	 additive	 functional	 on	 𝑊7(𝐸),	 then	 the	 function	
𝑘(𝑥̅, 𝑡): 𝐸 × 𝐵 → 𝐵		 i.e.	the	function	obtained	in	Lemma	3.11	is	a	uniformly	continuous	function	on	every	
boundedly	closed	interval	𝑃	⊂ ℛ	and	for	every	𝑥	) ∈	E	

	
Theorem	3.14	Given	𝐸 = '1(		, 𝑏	)* ⊂ ℛ!	with	𝑏	) > 1( ,	(𝐵, ‖∙‖,)	a	Banach	space,		𝐵∗	dual	Banach	of		𝐵.	

A	 functional	 F	 is	 boundedly	 continuous	 and	 weakly	 orthogonally	 additive	 on	 𝑊7(𝐸)	
if	and	only	if	there	exists	a	Caratheodory	function	𝑘(𝑥	) , 𝑡):	𝐸	 × 𝐵	 → 𝐵		with	𝑘(𝑥	) ,𝜃)=	𝜃	for	all		𝑥	) ∈ 𝐸		so	that	
𝑘(𝑥	) , 𝑡)	 is	 McShane-Bochner-Pettis	 integrable	 with	 respect	 to	 𝑥	)on	𝐸	for	every	𝑡	 ∈ 𝐵	 and	 it	 holds	
𝐹(𝑓) = ∫(𝑥

∗ v𝑘r𝑥	) , 𝑓(𝑥	))tw𝑑𝛼	for	every	function	𝑓 ∈ 𝑊7(𝐸)			and	every	𝑥∗ ∈ 𝐵∗	
	

Proof.	Sufficient	condition	If	𝑓 ∈ 		𝑊7(𝐸)	,	then	according	to	Theorem	2.28,	there	exists	a	sequence	
of	simple	functions	{𝑠!}	on	𝐸,	so	that	 	𝑠!(𝑥	)) → 		𝑓(𝑥̅)			almost	everywhere	on	𝐸	 for	 			𝑛 → ∞	 	and	without	
losing	 generality,	we	 can	 assume	 that	 |𝑠!(𝑥̅)| ≤ |𝑓(𝑥̅)|	 for	 all	𝑛.	 According	 to	Lemma	3.13,	 the	 function	
𝑘(𝑥	) ,⋅)		is	uniformly	continuous	on	every	boundedly	closed	interval	𝑃	⊂ ℛ	and	for	every	𝑥	) ∈ 𝐸.	Therefore:	
𝑘(𝑥	) , 𝑠!(𝑥	))) 	→	𝑘(𝑥	), 𝑓(𝑥	)))	almost	everywhere	on	𝐸	and	there	exists	a	number	𝑀 ≥ 0	 such	that	 it	holds	
|𝑘(𝑥	) , 𝑓)| ≤ 𝑀	almost	everywhere	on	𝐸.	Consequently,	according	to	the	Dominated	Convergence	Theorem	
(Theorem	2.29)	the	function lim

!→%
	𝑘(𝑥	) , 𝑠!(𝑥	)))	McShane-Bochner	Pettis	integrable	on	E	and	we	get:	

� 𝑥∗(𝑘(⋅, 𝑓(. ))𝑑𝛼
⬚

(
=	 lim

!→%
� 𝑥∗(𝑘r⋅, 𝑠!(⋅)t𝑑𝛼
⬚

(
	

= lim
!→%

� ℱ(𝑠!)
⬚

(
	

= ℱ v lim
!→%

𝑠!w	
= ℱ(𝑥∗(𝑓))	

	
Necessary	 conditions:	 Given	 that	 𝑓, 𝑔	 ∈ 	 		𝑊7(𝐸)	 so	 that	 	𝑓 ⊥ 𝑔,	 that	 it	 holds	 𝑓(𝑥	))𝑔(𝑥	)) = 0	 almost	
everywhere	𝐸.	Furthermore,	we	define	the	sets:	
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:	
𝐴 = {𝑥	) ∈ 𝐸: 𝑔(𝑥	)) = 0}, 𝐵 = {𝑥	) ∈ 𝐸: 𝑓(𝑥	)) = 0}	and	
𝐶 = {𝑥	) ∈ 𝐸: 𝑓(𝑥	)) ≠ 0}	dan	𝑔(𝑥	)) ≠ 0}	

then	we	get:	
	

ℱ(𝑓 + 𝑔) = 	� 𝑘(⋅, (𝑓 + 𝑔)(⋅)𝑑𝛼
⬚

(
	

=	� 𝑘(⋅, 𝑓(⋅))𝑑𝛼
⬚

>
+� 𝑘(⋅, 𝑓(⋅))𝑑𝛼

⬚

,
+� 𝑘(⋅, 𝑓(⋅))𝑑𝛼

⬚

?
	

+� 𝑘(⋅, 𝑔(⋅))𝑑𝛼
⬚

>
+� 𝑘(⋅, 𝑔(⋅))𝑑𝛼

⬚

,
+� 𝑘r⋅, 𝑔(⋅)t𝑑𝛼 ⋅

⬚

?
	

=	� 𝑘(⋅, 𝑓(⋅))𝑑𝛼
⬚

(
+� 𝑘(⋅, 𝑔(⋅))𝑑𝛼

⬚

(
	

= ℱ(𝑓) + ℱ(𝑔)	
	
So	ℱ	is	an	orthogonally	additive	functional	on			𝑊7(𝐸).	

Furthermore,	 given	 that	𝑓 ∈ 		𝑊7(𝐸)	 and	 any	 sequence	 {𝑓!}	⊂ 		𝑊7(𝐸)	 such	 that	 {𝑓!}	 converges	
boundedly	to	the	function	𝑓	almost	everywhere	in	𝐸		,	i.e.	there	exists	a	number	𝑀 ≥ 0	so	that	|𝑓!(𝑥	))| ≤ 𝑀	
for	every	𝑛	and		𝑓!(𝑥	)) → 𝑓(𝑥	))	almost	everywhere	on	𝐸.		Since	the	function	𝑘(𝑥	) ,⋅)	is	continuous	uniformly	
on	 every	 boundedly	 closed	 interval	𝑃 ⊂ ℛ,	and	 every	𝑥	) ∈ 𝐸,	then	 there	 exists	 a	 number	𝑁 ≥ 0		so	 that	
x𝑘r𝑥	), 𝑓!(𝑥	))tx ≤ 𝑁	 for	 all	 𝑛	 and	 almost	 everywhere	 on	 𝐸.	 Therefore,	 according	 to	 the	 Dominated	
Convergence	Theorem	(Theorem	2.29),	we	obtain:	

lim
!→%

� 𝑥∗(𝑘r⋅, 𝑓!(⋅)t𝑑𝛼
⬚

(
= � 𝑥∗(𝑘r⋅, 𝑓(⋅)t𝑑𝛼

⬚

(
⟺ lim

!→%
ℱ(𝑓!) = ℱ(𝑓)	

In	other	words,	the	functional	ℱ	is	boundedly	continuous	on			𝑊7(𝐸).	∎	
	
Discussion	

The	results	of	this	study	demonstrated	the	importance	of	a	deep	understanding	of	the	functional	
properties	of	weakly	orthogonal	additives.	The	results	of	this	research	contributed	to	the	development	of	
weakly	 orthogonal	 additive	 functional	 theory	 in	 the	 McShane-Bochner	 integral	 function	 space	 in	 the	
Euclidean	space	ℛ!,	especially	in	developing	certain	conditions	that	guarantee	the	validity	of	the	related	
theorems.	 The	 properties	 of	 weakly	 orthogonal	 additive	 functionals	 proven	 in	 this	 study	 provide	 an	
important	 tool	 for	 mathematicians	 and	 scientists	 in	 various	 disciplines	 to	 analyze	 and	model	 systems	
involving	weakly	orthogonal	additive	functionals.	

The	results	of	this	research	are	in	line	with	previous	research	on	weakly	additive,	order-preserving,	
normed	and	positively	homogeneous	functionals	on	a	metric	compact	(Bekzhanova,	2018).		The	research	
focused	on	the	metrization	of	a	space	of	weakly	additive	functionals.	It	began	by	constructing	a	space	of	
weakly	additive,	order-preserving,	normed,	and	positively	homogeneous	functionals	on	a	metric	compact.	
The	study	involved	a	modified	Kantorovich-Rubinshtein	metric	within	this	space	of	weakly	additive	normed	
functionals	 on	 a	 metric	 compact.	 	 Additionally,	 the	 results	 of	 this	 research	 align	 with	 studies	 on	 the	
dimension	of	the	space	of	weakly	additive	functionals	(Jiemuratov,	2023).	The	study	established	weakly	
additive,	 order-preserving,	 normalized	 functionals	 and	 provides	 various	 interpretations	 of	 these	
functionals.	Based	on	 these	 findings,	an	example	 is	constructed	demonstrating	 that	 the	space	of	weakly	
additive,	 order-preserving,	 normalized	 functionals	 cannot	 be	 embedded	 in	 any	 space	 of	 finite	 (or	 even	
countable)	algebraic	dimension,	provided	that	the	compact	space	contains	more	than	one	point.	

The	results	of	this	research	are	not	only	theoretically	important	but	also	have	practical	implications	
in	various	fields	that	utilize	weakly	orthogonal	additive	functionals.	An	example	of	a	possible	application	is	
in	Data	Analysis	and	Statistics.	In	statistics,	the	concept	of	orthogonality	is	used	to	decorrelate	variables,	so	
weakly	 orthogonal	 additive	 functionals	 can	help	 in	 identifying	 and	 extracting	 components	 that	 are	 less	
bound	or	weakly	correlated.	Another	application	example	is	in	the	field	of	Information	Theory.	In	coding	
and	information	theory,	orthogonality	is	often	used	to	maximize	channel	capacity	and	reduce	interference	
between	signals.	Weakly	orthogonal	 additive	 functionals	 can	be	applied	 to	design	efficient	 and	 tamper-
resistant	code.	

It	is	hoped	that	further	in-depth	research	can	expand	the	application	of	this	theorem	into	a	wider	
variety	of	contexts.	Further	discussion	can	examine	the	application	of	these	theorems	in	various	contexts,	
such	 as	 applications	 in	 probability	 theory,	 signal	 processing,	 data	 analysis,	 and	 others.	 In	 addition,	 the	
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research	 results	 provide	 potential	 for	 further	 development,	 including	 generalization	 to	 non-Euclidean	
spaces	with	more	complex	conditions.	

4. CONCLUSION	

This	 research	has	succeeded	 in	constructing	a	 function	space	which	 is	a	 collection	of	McShane-
Bochner	 integral	 functions	 defined	 in	 the	 cell	 '𝑎(		𝑏	) *	 in	 the	 Euclidean	 space	ℛ!	 which	 fulfills	 certain	
properties.	 Based	 on	 this	 function	 space,	 the	 Representation	 Theorem	 for	 weak	 orthogonal	 additive	
functionals	is	then	constructed	in	the	newly	constructed	function	space.	

The	 discussion	 of	 the	Representation	 Theorem	 in	 this	 research	 is	 still	 limited	 to	 the	Mcshane-
Bochner	integral	function	space	which	is	defined	in	the	Euclidean	space	ℛ!.	The	discussion	can	be	expanded	
in	other,	wider	function	spaces,	for	example	in	the	Henstock-Bochner	integral	function	space	defined	in	the	
Euclidean	space		ℛ!.	
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