Multiple Linear Regressi pada Fuzzy Neural Network (FNN) Penentuan Kualitas Daging Sapi
DOI:
https://doi.org/10.23887/jstundiksha.v11i1.38267Keywords:
Identifikasi, Kualitas, Daging Sapi, Multiple Linear Regressi (MLR), Fuzzy Neural Network (FNN),Abstract
Tujuan penelitian ini membahas proses identifikasi kualitas daging sapi dengan implementasi metode multiple linear regressi (MLR) pada fuzzy neural network (FNN). Metode ini dikembangkan untuk menyempurnakan proses identifikasi yang sudah ada sebelumnya. MLR mampu melakukan proses pengukuran korelasi variable (X) dengan hasil keluaran (Y). Pendekatan dalam proses analisis tersebut menggunakan pendekatan kuantitatif untuk melakukan pengukuran dari beberapa aspek indikator yang digunakan dalam penentuan kualitas daging sapi. Berdasarkan hasil uji korelasi dengan MLR membuktikan bahwa variabel kandungan zat kimia (X1), bau (X2), warna (X3), dan tekstur daging (X4) menghasilkan hubungan yang signifikan terhadap kualitas daging sapi (Y) dengan nilai sebesar 96.5%. Hasil analisis MLR mampu memberikan gambaran indikator variable yang tepat dalam proses analisis. Keluaran FNN juga menyajikan hasil yang cukup akurat dengan nilai sebesar 99.88%. Dengan hasil keluaran yang didapat, maka secara keseluruhan dapat disimpulkan bahwa model analisis MLR dan FNN memberikan hasil analisis dengan tingkat akurasi yang lebih baik dan efektif. Hasil tersebut mampu memberikan implikasi berupa sebuah rekomendasi dalam bentuk pengetahuan dan informasi yang didapat kepada masyarakat guna menentukan daging sapi yang baik dikonsumsi.
References
Adams, C., Carleo, G., Lovato, A., & Rocco, N. (2021). Variational Monte Carlo Calculations of A≤ 4 Nuclei with An Artificial Neural-Network Correlator Ansatz. Physical Review Letters, 127(2), 22502.
Alić, B. (2016). Classification of Stress Recognition Using Artificial Neural Network. 2016 5th Mediterranean Conference on Embedded Computing, MECO 2016 - Including ECyPS 2016, BIOENG.MED 2016, MECO: Student Challenge 2016. https://doi.org/10.1109/MECO.2016.7525765.
Anastassiou, G. A., & Iatan, I. F. (2016). A Recurrent Neural Fuzzy Network. Journal of Computational Analysis and Applications, 20(2), 213–225.
Anastasya, S., Swacita, I. B. N., & Suada, I. K. (2020). Perbandingan Kualitas Fisik Objektif Daging Sapi Bali Produksi Rumah Pemotongan Hewan Karangasem, Klungkung, dan Gianyar. Indonesia Medicus Veterinus, 9(3), 361–369. https://doi.org/10.19087/imv.2020.9.3.361.
Andaya, A. E., Arboleda, E. R., Andilab, A. A., & Dellosa, R. M. (2019). Meat Marbling Scoring Using Image Processing with Fuzzy Logic Based Classifier. International Journal of Scientific and Technology Research, 8(8), 1442–1445.
Araiza-Aguilar, J. A., Rojas-Valencia, M. N., & Aguilar-Vera, R. A. (2020). Forecast Generation Model of Municipal Solid Waste Using Mlinear Regression. Global Journal of Environmental Science and Management, 6(1), 1–14. https://doi.org/10.22034/gjesm.2020.01.01.
Arsy, L., Nurhayati, O. D., & Martono, K. T. (2016). Application of Digital Meat Detection Image Processing Using the K-Mean Clustering Segmentation Method Based on Open CV and Eclipse. Jurnal Teknologi Dan Sistem Komputer, 4(2), 322.
Asmara, R. A., Puspitasri, D., Romlah, S., H, Q., & Romario, R. (2017). Identifikasi Kesegaran Daging Sapi Berdasarkan Citranya dengan Ekstraksi Fitur Warna dan Teksturnya Menggunakan Metode Gray Level Co-Occurrence Matrix. Prosiding SENTIA, 9, 89–94.
Astuti, W. T., Muslim, M. A., & Sugiharti, E. (2019). The Implementation of The Neuro Fuzzy Method Using Information Gain for Improving Accuracy in Determination of Landslide Prone Areas. Scientific Journal of Informatics, 6(1), 95–105. https://doi.org/10.15294/sji.v6i1.16648.
Barhmi, S. (2020). Forecasting of Wind Speed Using Multiple Linear Regression and Artificial Neural Networks. Energy Systems, 11(4), 935–946. https://doi.org/10.1007/s12667-019-00338-y.
Baskoro, F., Alamsyah, F., & Suprianto, B. (2021). Peramalan Beban Listrik Harian Menggunakan Artificial Neural Network. Jurnal Teknik Elektro, 10(1), 203–209.
Beşikçi, E. B. (2016). An Artificial Neural Network Based Decision Support System for Energy Efficient Ship Operations. Computers and Operations Research, 66, 393–401. https://doi.org/10.1016/j.cor.2015.04.004.
Budiman, I., & Akhlakulkarimah, A. N. (2015). Aplikasi Data Mining Menggunakan Multiple Linear Regression untuk Pengenalan Pola Curah Hujan. JURNAL ILMIAH ILMU KOMPUTER, 2(1). https://doi.org/10.20527/klik.v2i1.16.
Çerçi, K. N., & Hürdoğan, E. (2020). Comparative Study of Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) Techniques to Model A Solid Desiccant Wheel. International Communications in Heat and Mass Transfer, 116. https://doi.org/10.1016/j.icheatmasstransfer.2020.104713.
Ciulla, G. (2019). Building Energy Performance Forecasting: A multiple Linear Regression Approach. Applied Energy, 253. https://doi.org/10.1016/j.apenergy.2019.113500.
Dai, B., Chen, R., & Chen, R. C. (2017). Temperature Control with Fzzy Neural Network. In Proceedings - 2017 IEEE 8th International Conference on Awareness Science and Technology, iCAST 2017 (Vol. 2018-Janua, pp. 452–455). https://doi.org/10.1109/ICAwST.2017.8256499.
Garcia-Guiliany, J., De-La-hoz-franco, E., Rodríguez-Toscano, A. D., De-La-hoz-hernández, J. D., & Hernandez-Palma, H. G. (2020). Multiple Linear Regression Model Applied to The Projection of Electricity Demand in Colombia. International Journal of Energy Economics and Policy, 10(1), 419–422. https://doi.org/10.32479/ijeep.7813.
Hahs-Vaughn, D. L., Lomax, R. G., Hahs-Vaughn, D. L., & Lomax, R. G. (2020). Multiple Linear Regression. In An Introduction to Statistical Concepts (pp. 923–995). https://doi.org/10.4324/9781315624358-18.
Herlambang, A. S., Nurhayati, O. D., & Martono, K. T. (2016). Sistem Pendeteksi Kualitas Daging dengan Ekualisasi Histogram dan Thresholding Berbasis Android. Jurnal Teknologi Dan Sistem Komputer, 4(2), 404. https://doi.org/10.14710/jtsiskom.4.2.2016.404-413.
Huanyao, Q. (2016). The Reserch of Variable Structure Fuzzy Neural Network Control System. In Proceedings of 2016 IEEE International Conference of Online Analysis and Computing Science, ICOACS 2016 (pp. 273–276). https://doi.org/10.1109/ICOACS.2016.7563095.
Ichsan, H. B. F. D. S. M. H. H. (2019). Implementasi Sistem Penentuan Kesegaran Daging Sapi Lokal Berdasarkan Warna dan Kadar Amonia dengan Metode Jaringan Saraf Tiruan Berbasis Embedded System. Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3, 3955–3962.
Isra Mirandha, I. (2017). Pengaruh Tampilan Etalase, Pendekatan Promosi, Gaya Hidup Berbelanja, dan Karyawan Toko terhadap Pembelian Impulsif pada Pengunjung Hermes Palace Mall Kota Banda Aceh. Jurnal Ilmiah Mahasiswa Ekonomi Manajemen, 2(3).
Izzah, A., & Widyastuti, R. (2017). Prediksi Harga Saham Menggunakan Improved Multiple Linear Regression untuk Pencegahan Data Outlier. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 141–150.
Jan, B. (2017). Analysis of Variability of Atmospheric Pollutants in Ambient Air of Metropolitan City Karachi, and Environmental Sustainability. Journal of Basic & Applied Sciences, 13, 311–315. https://doi.org/10.6000/1927-5129.2017.13.51.
Kenton, W. (2021). Multiple Linear Regression (MLR) Definition.
Khademi, F., Akbari, M., Jamal, S. M., & Nikoo, M. (2017). Multiple Linear Regression, Artificial Neural Network, and Fuzzy Logic Prediction of 28 Days Compressive Strength of Concrete. Frontiers of Structural and Civil Engineering, 11(1), 90–99. https://doi.org/10.1007/s11709-016-0363-9.
Khashei, M., Zeinal Hamadani, A., & Bijari, M. (2012). A Novel Hybrid Classification Model of Artificial Neural Networks and Multiple Linear Regression Models. Expert Systems with Applications, 39(3), 2606–2620. https://doi.org/10.1016/j.eswa.2011.08.116.
Kodogiannis, V. (2016). A Fuzzy-Wavelet Neural Network Model for The Detection of Meat Spoilage Using An Electronic Nose. 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016. https://doi.org/10.1109/FUZZ-IEEE.2016.7737757.
Komolka, K. (2020). Determination and Comparison of Physaical Meat Quality Parameters of Percidae and Salmonidae in Aquaculture. Foods, 9(4). https://doi.org/10.3390/foods9040388.
Korshunova, K. P. (2018). A Convolutional Fuzzy Neural Network for Image Classification. In RPC 2018 - Proceedings of the 3rd Russian-Pacific Conference on Computer Technology and Applications. https://doi.org/10.1109/RPC.2018.8482211.
Leung, Y. (2020). Fuzzy Set and Fuzzy Logic. In International Encyclopedia of Human Geography (pp. 247–251). https://doi.org/10.1016/b978-0-08-102295-5.10380-4.
Li, J., Fu, X., Lv, J., Cui, L., Li, R., Bai, A., … Tang, X. (2021). Multiple Regression Analysis of Perinatal Conditions, Physical Development, and Complications in Assisted Reproduction Singletons. Translational Pediatrics, 10(9), 2347.
Maharani, N. N., & Candra, F. (2021). Aplikasi Smartdiet Menggunakan Logika Fuzzy Berbasis Android.
Mahendra, P. A., Kartini, U. T., & Haryudo, S. I. (2021). Peramalan Susut Energi Jangka Pendek Menggunakan Metode Fuzzy Logic dan Feed Forward Neural Network Berdasarkan Keseimbangan Beban. Jurnal Teknik Elektro, 10(2), 453–462.
Nasir, J. (2017). Analisis Fuzzy Logic Menentukan Pemilihan Motor Honda dengan Metode Mamdani. Edik Informatika, 3(2), 177–186.
Nasution, S. Z., Lubis, R. S., & Cipta, H. (2021). Penerapan Metode Jaringan Syaraf Tiruan Backpropagation dalam Memprediksi Jumlah Mahasiswa Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sumatera Utara Medan. THETA: Jurnal Pendidikan Matematika, 3(1), 41–45.
Pasini, A. (2015). Artificial Neural Networks for Small Dataset Analysis. Journal of Thoracic Disease, 7(5), 953–960. https://doi.org/10.3978/j.issn.2072-1439.2015.04.61.
Setia, B., & Prasetyaningrum, P. T. (2019). Penerapan Metode Logika Fuzzy. Jurnal Sistem Cerdas (Vol. 2).
Sihombing, V. E., Swacita, I. B. N., & Suada, I. K. (2020). Perbandingan Uji Subjektif Kualitas Daging Sapi Bali Produksi Rumah Pemotongan Hewan Gianyar, Klungkung, dan Karangasem. Indonesia Medicus Veterinus, 9(1), 99–106. https://doi.org/10.19087/imv.2020.9.1.99.
Silva, I. N. da. (2016). Artificial Neural Networks: A Practical Course. Artificial Neural Networks: A Practical Course. https://doi.org/10.1007/978-3-319-43162-8.
Sorkheh, K., Kazemifard, A., & Rajabpoor, S. (2018). A Comparative Study of Fuzzy Linear Regression and Multiple Linear Regression in Agricultural Studies: A Case Study of Lentil Yield Management. Turkish Journal of Agriculture and Forestry, 42(6), 402–411. https://doi.org/10.3906/tar-1709-57.
Sudibyo, U., Kusumaningrum, D. P., Rachmawanto, E. H., & Sari, C. A. (2018). OPTIMASI Algoritma Learning Vector Quantization (Lvq) dalam Pengklasifikasian Citra Daging Sapi dan Daging Babi Berbasis Glcm dan HSV. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 9(1), 1–10. https://doi.org/10.24176/simet.v9i1.1943.
Tüzün, A. E. (2020). Determination of Meat Quality in Extensively Reared Akkaraman Sheep Breed. IFMBE Proceedings. https://doi.org/10.1007/978-3-030-40049-1_23.
Usmiati, S. (2017). KEEMPUKAN DAGING: Faktor yang Mempengaruhi dan Cara Memperoleh Keempukan Daging.
Utomo, M. C. C., Mahmudy, W. F., & Anam, S. (2017). Kombinasi Logika Fuzzy dan Jaringan Syaraf Tiruan untuk Prakiraan Curah Hujan Timeseries di Area Puspo – Jawa Timur. Jurnal Teknologi Informasi Dan Ilmu Komputer, 4(3). https://doi.org/10.25126/jtiik.201743299.
Villarrubia, G. (2018). Artificial Neural Networks Used in Optimization Problems. Neurocomputing, 272, 10–16. https://doi.org/10.1016/j.neucom.2017.04.075.
Wang, W. (2016). A Non-Destructive Detection System for Determination of Multi-Quality Parameters of Meat. 2016 American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 2016. https://doi.org/10.13031/aim.20162461187.
Wardani, A. R., Nasution, Y. N., & Amijaya, F. D. T. (2017). Aplikasi Logika Fuzzy dalam Mengoptimalkan Produksi Minyak Kelapa Sawit Dd PT. Waru Kaltim Plantation Menggunakan Metode Mamdani. Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, 12(2), 94. https://doi.org/10.30872/jim.v12i2.651.
Widodo, A. P., Sarwoko, E. A., & Firdaus, Z. (2017). Akurasi Model Prediksi Metode Backpropagation. Jurnal Matematika Vol, 20, 79–84.
Wiedermann, W. (2015). Direction of Effects in Multiple Linear Regression Models. Multivariate Behavioral Research, 50(1), 23–40. https://doi.org/10.1080/00273171.2014.958429.
Wong, Y. J. (2020). Comparativudy of Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Multiple Linear Regression (MLR) for Modeling of Cu (II) Adsorption from Aqueous Solution Using Biochar Derived from Rambutan (Nephelium Lappaceum) Pee. Environmental Monitoring and Assessment, 192(7). https://doi.org/10.1007/s10661-020-08268-4.
Yanto, M., Sanjaya, S., Yulasmi, Guswandi, D., & Arlis, S. (2021). Implementation Multiple Linear Regresion in Neural Network Predict Gold Price. Department of Informatics Engineering, Faculty of Computer Science, Universitas Putra Indonesia YPTK, Indonesia.
Yazdanbakhsh, O., & Dick, S. (2019). A Deep Neuro-Fuzzy Network for Image Classification. ArXiv.
Yeylaghi, S., Otadi, M., & Imankhan, N. (2017). A New Fuzzy Regression Model Based on Interval-Valued Fuzzy Neural Network and Its Applications to Management. Beni-Suef University Journal of Basic and Applied Sciences, 6(2), 106–111. https://doi.org/10.1016/j.bjbas.2017.01.004.
Zadeh, L. A. (2015). Fuzzy logic - A Personal Perspective. Fuzzy Sets and Systems, 281, 4–20. https://doi.org/10.1016/j.fss.2015.05.009.
Zaman, T., & Alakus, K. (2019). Comparison of Resampling Methods in Multiple Linear Regression. Ondokuz Mayis University, 1(1), 91–92.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 JST (Jurnal Sains dan Teknologi)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)