PROTEASE ACTIVITY OF THERMOPHILIC BACTERIA FROM LEJJA HOT SPRINGS IN SOPPENG SOUTH SULAWESI

Authors

  • Hafsan Hafsan Biology Department Faculty of Science and Technology UIN Alauddin Makassar Makassar, Indonesia
  • Kurnia Ramadani Chemistry Department Faculty of Science and Technology UIN Alauddin Makassar Makassar, Indonesia
  • Abbas Abbas Chemistry Department Faculty of Science and Technology UIN Alauddin Makassar Makassar, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v10i2.38367

Keywords:

protease, thermophilic bacteria, casein, Lejja

Abstract

This research aimed to observe quantitatively the effect of temperature and pH on protease activities from thermophilic bacteria collected from Lejja—Hot springs.  Spectrophotometry on the casein substrate was used to test the proteolytic activity of the crude protease.  Mixtures of enzyme and casein were incubated at various temperatures and pH for 20 minutes. The absorbance of tyrosine from protein hydrolysis was determined by spectrophotometry on λ 280 nm. Temperature and pH impacted on protease activity were determined at temperature (60; 65; 70; 75; 80; 85 and 90oC) and pH (6.0; 6.5; 7.0; 7.5; 8, 0; 8,5 and 9,0). Results showed that treatment of temperature variations and pH had a significant effect on protease activity. Crude extract of Bacillus licheniformis protease showed that the highest activity at 80oC and pH 7.5 was 0.1303 unit/ml/minute. Bacillus stearoformis showed the highest enzymatic activity of the protease at 85oC, and pH 7.5 was 0.1226 Unit/ ml/minute. In comparison, Bacillus coagulans reached optimum activity at 75oC, and pH 7.5 was 0.2052 Unit/ml/minute. Isolates of Bacillus licheniformisB. coagulans and B. stearoformis are bacteria that produce thermostable protease enzymes that can be developed as a source of genes and as a producer of the enzyme itself.

References

Amin, A., Ahmed, I., Salam, N., Kim, B.-Y., Singh, D., Zhi, X.-Y., Xiao, M., & Li, W.-J. (2017). Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan. Microbial Ecology, 74(1), 116–127.

Banerjee, G., & Ray, A. K. (2017). Impact of microbial proteases on biotechnological industries. Biotechnology and Genetic Engineering Reviews, 33(2), 119–143.

Chavasit, V., Photi, J., Purttiponthanee, S., & Saekoo, P. (2018). Use of Bacterial Growth Curve for Assessing Risk of Microbiological Pathogens in Food Products. In Microbial Contamination and Food Degradation (pp. 341–365). Elsevier.

dos Santos Aguilar, J. G., & Sato, H. H. (2018). Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International, 103, 253–262.

Fernandes, P., & Carvalho, F. (2016). Enzymes in Food Processing. In Agro-Industrial Wastes as Feedstock for Enzyme Production: Apply and Exploit the Emerging and Valuable Use Options of Waste Biomass.

Fernandes, Pedro, & Carvalho, F. (2017). Microbial Enzymes for the Food Industry. In Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications.

Gooch, J. W. (2011). Standard Bacterial Growth Curve. In Encyclopedic Dictionary of Polymers (pp. 925–925). Springer New York.

Gupta, R., Beg, Q., & Lorenz, P. (2002). Bacterial alkaline proteases: Molecular approaches and industrial applications. In Applied Microbiology and Biotechnology, 59(1), pp. 15–32.

Hafsan. (2018). Isolasi dan Identifikasi Bakteri Termofilik Penghasil Protease dari Sumber Air Panas Lejja Soppeng Di Sulawesi Selatan (Research Report). Lembaga Penelitian dan Pengabdian kepada Masyarakat UIN Alauddin Makassar.

Haki, G. (2003). Developments in industrially important thermostable enzymes: a review. Bioresource Technology, 89(1), 17–34.

Indriati, G., & Megahati, R. R. P. (2018). Isolation of Thermophilic Bacteria and Optimizing the Medium Growth Conditions. International Journal of Current Microbiology and Applied Sciences, 7(1).

Kumar, Sunil, Kumar, R., Pal, A., & SinghChopra, D. (2018). Enzymes. In Postharvest Physiology and Biochemistry of Fruits and Vegetables.

Kumar, Surinder. (2016). Essentials of Microbiology. In Essentials of Microbiology. Jaypee Brothers Medical Publishers (P) Ltd.

Kuriyan, J., Konforti, B., & Wemmer, D. (2021). Principles of Enzyme Catalysis. In The Molecules of Life.

Liu, X., & Kokare, C. (2017). Microbial Enzymes of Use in Industry. In Biotechnology of Microbial Enzymes (pp. 267–298). Elsevier.

López-Otín, C., & Bond, J. S. (2008). Proteases: multifunctional enzymes in life and disease. The Journal of Biological Chemistry, 283(45), 30433–30437.

Lopina, O. D. (2017). Enzyme Inhibitors and Activators. In Enzyme Inhibitors and Activators.

Marshall, C. E. (1917). Microbiology : a text-book of microorganisms general and applied. In Microbiology : a text-book of microorganisms general and applied. P. Blakiston’s son & co.

Maurer, K. (2004). Detergent proteases. Current Opinion in Biotechnology, 15(4), 330–334.

Mikdarullah, M., & Nugraha, A. (2017). Teknik Isolasi Bakteri Proteolitik Dari Sumber Air Panas Ciwidey, Bandung. Buletin Teknik Litkayasa Akuakultur, 15(1), 11.

Mohammad, B. T., Al Daghistani, H. I., Jaouani, A., Abdel-Latif, S., & Kennes, C. (2017). Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes. International Journal of Microbiology, 12(1), 21-29.

Muñoz, R., & Barceló, A. R. (2004). Enzymes. In Handbook of Food Analysis Second Edition: Physical Characterization and Nutrient Analysis (Vol. 1).

Nuritasari, D., Sarjono, P. R., & Aminin, A. L. N. (2017). Isolasi Bakteri Termofilik Sumber Air Panas Gedongsongo dengan Media Pengaya MB (Minimal Broth) dan TS (Taoge Sukrosa) serta Identifikasi Fenotip dan Genotip. Jurnal Kimia Sains Dan Aplikasi, 20(2), 84–91.

Olajuyigbe, F. M., & Ajele, J. O. (2005). Production dynamics of extracellular protease from Bacillus species. African Journal of Biotechnology, 4(8).

Osho, M. B. (2019). Industrial Enzyme Technology. In Biotechnology.

Punekar, N. S. (2018). Enzymes: Catalysis, Kinetics and Mechanisms. In Enzymes: Catalysis, Kinetics and Mechanisms.

Rachma, A., Sarjono, P. R., & Aminin, A. L. N. (2009). Isolasi Bakteri Termofilik Sumber Air Panas Gedongsongo dengan Media Pengaya Minimal YT (Yeast Tripton) serta Identifikasi Genotipik dan Fenotipik. Jurnal Kimia Sains Dan Aplikasi, 12(3), 66–71.

Rawlings, N. D., & Salvesen, G. (2013). Handbook of Proteolytic Enzymes. In Handbook of Proteolytic Enzymes.

Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A., & Ashraf, M. (2019). Microbial Proteases Applications. Frontiers in Bioengineering and Biotechnology, 7.

Robinson, P. K. (2015). Enzymes: principles and biotechnological applications. Essays in Biochemistry, 59, 1–41.

Roy Choudhury, A. K. (2019). Introduction to enzymes. In Sustainable Technologies for Fashion and Textiles.

Sanchez, S., & Demain, A. L. (2017). Useful Microbial Enzymes-An Introduction. In Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications.

Singh, P., & Kumar, S. (2018). Microbial enzyme in food biotechnology. In Enzymes in Food Biotechnology: Production, Applications, and Future Prospects.

Singh, R. S., Singh, T., & Pandey, A. (2019). Microbial enzymes-an overview. In Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology.

Suman, S., & Ramesh, K. (2008). An extracellular thermostable protease production from thermophilic Bacíllus species isolated from soil. Biosciences Biotechnology Research Asia, 5(2).

Tanzadeh, J., Yasouri, F. N., & Ghaemi, N. (2006). Isolation and identification of the thermophilic protease-producing bacteria from soil of north of Iran. Biosciences Biotechnology Research Asia, 3(2 A).

Ward, O. P. (2011). Proteases. In Comprehensive Biotechnology (pp. 571–582). Elsevier.

Ward, O. P., Rao, M. B., & Kulkarni, A. (2009). Proteases, Production. In Encyclopedia of Microbiology (pp. 495–511). Elsevier.

Downloads

Published

2021-11-03

Issue

Section

Articles