Pengolahan Limbah Minyak Sawit Menggunakan Chlorella sp. yang Diimobilisasi dalam Flat-Fotobioreaktor

Authors

  • Shinta Elystia
  • Fucy Adilla Hasti Universitas Riau Kampus Bina Widya
  • Sri Rezeki Muria Universitas Riau Kampus Bina Widya

DOI:

https://doi.org/10.23887/jstundiksha.v11i1.43236

Keywords:

Imobilisasi Mikroalga, Chlorella sp., Konsentrasi POME, Sumber Cahaya

Abstract

Limbah cair minyak sawit masih menjadi persoalan di Indonesia. Tingginya kandungan organik jika tidak dilakukan pengolahan mengakibatkan pencemaran lingkungan, sehingga diperlukan pengolahan lanjutan salah satunya menggunakan mikroalga Chlorella sp yang diimobilisasi. Mikroalga Chlorella sp. dapat dimanfaatkan untuk pengolahan limbah POME karena berpotensi sebagai nutrien untuk pertumbuhan alga. Tujuan penelitian ini menghitung efisiensi penyisihan COD, nitrogen total limbah cair sawit didalam flat-fotobioreaktot dengan variasi konsentrasi limbah dan sumber cahaya yang berbeda. Imobilisasi sel Chlorella sp. menggunakan kalsium alginat untuk membentuk bead alga diameter 3-4 mm. Pada Ppnelitian ini konsetrasi limbah POME divariasikan 50%, 75%, dan 100% (v/v) dan variasi sumber cahaya yang berasal dari cahaya matahari dan cahaya lampu dengan intensitas cahaya 5000±300 lux dan fotoperiode 12:12 jam. Hasil Penelitian menunjukkan bahwa efisiensi penyisihan limbah cair sawit tertinggi pada konsentrasi limbah 50% (v/v) menggunakan sumber cahaya buatan dengan densitas maksimum mencapai 1,93 x 107 sel mL-1 dan mampu menyisihkan COD, dan nitrogen total masing-masing yaitu 80% dan 84,93% pada hari ke 7. Maka, pengolahan limbah cair minyak sawit dengan proses immobilisasi mikroalga dalam chlorella sp flat-fotobioreaktor  cukup efektif untuk menurunkan konsentrasi COD dan nitrogen total.

References

Alejandro, R., Leopoldo, G., Mendoza, E., & Tom, S. (2010). Growth and Nutrient Removal in Free And Immobilized Green Algae in Batch and Semi- Continuous Cultures Treating Real Wastewater. Journal Bioresource Technology, 101, 58–64. https://doi.org/10.1016/j.biortech.2009.02.076.

Aslan, S., & Kapdan, I. . (2006). Batch Kinetics of Nitrogen and Phosphorus Removal From Synthetic Wastewater by Algae. Ecological Engineering, 28(1), 64–70. https://doi.org/10.1016/j.ecoleng.2006.04.003.

Carvalho, A. ., Silva, S. ., Baptista, J. ., & Malcata, F. . (2011). Light Requirements in Microalgae Photobioreactors: An Overview of Biophotonic Aspects. Appl. Microbiol. Biotechnol. 89, doi: Applied Microbiology and Biotechnology, 89(5), 1275–1288. https://doi.org/10.1007/s00253-010-3047-8.

Daniyati, R., Gatut, Y., & Agus, R. (2012). Desain Closed Photobioreaktor Chlorella Vulgaris sebagai Mitigasi CO2. Jurnal Sains Dan Seni, 1, 1–5. https://doi.org/10.12962/j23373520.v1i1.239.

De-Bashan, L. E., & Bashan, Y. (2010). Immobilized Microalgae for Removing Pollutants: Revies of Practical Aspects. Bioresource Technology, 101, 1611–1627. https://doi.org/10.1016/j.biortech.2009.09.043.

Dermawan, D., & Ashari, M. L. (2018). Studi Pemanfaatan Limbah Padat Industri Pengolahan Minyak Kelapa Sawit Spent Bleaching Earth sebagai Pengganti Agregat pada Campuran Beton. Jurnal Presipitasi, 15(1), 7 – 10. https://doi.org/10.14710/presipitasi.v15i1.7-10.

Elystia, S, Darmayanti, I. D., & Muria, S. R. (2019). Pengaruh Variasi Konsentrasi Bead Alga Chlorella Sp. Dalam Flat-Fotobioreaktor untuk Menyisihkan Nutrien pada Palm Oil Mill Effluent (POME). Jurnal Sains Dan Teknologi, 18(1), 14–20. https://doi.org/10.31258/jst.v18.n1.p14-20.

Elystia, Shinta, Muria, R. ., & Anggraini, L. (2017). Removal Of COD and Total Nitrogen from Palm Oil Mill Effluent in Flat-Photobioreactor Using Immobilised Microalgae Chlorella sp. Food Research, 3(2), 126–130. https://doi.org/10.26656/FR.2017.

Fontoura, J. T., Rolim, G, S., Farenzena, M., & Gutterres, M. (2017). Influence of Light Intensity and Tannery Wastewater Concentration on Biomass Production and Nutrient Removal by Microalgae Scenedesmus sp. : Brazil. https://doi.org/. Process Safety and Environment Protection, 111, 355–362. https://doi.org/10.1016/j.psep.2017.07.024.

Grothey, A., Tabernero, J., Arnold, D., De Gramont, A., Ducreux, M. P., O’Dwyer, P. J., Van Cutsem, E., Bosanac, I., Srock, S., Mancao, C., Gilberg, F., Winter, J., & Schmoll, H.-J. (2018). Fluoropyrimidine (FP) + bevacizumab (BEV) + atezolizumab vs FP/BEV in BRAFwt Metastatic Colorectal Cancer (mCRC): Findings from Cohort 2 of MODUL – A Multicentre, Randomized Trial of Biomarker-Driven Maintenance Treatment Following First-Line Induction th. Annals of Oncology, 29(October), viii714–viii715. https://doi.org/10.1093/annonc/mdy424.020.

Habib, M., Yusoff, F., Phang, S., Kamarudin, M., & Mohamed, S. (2003). Growth and Nutritional Values of Molina Micrura Fed on Chlorella Vulgaris Grown in Digested Palm Oil Mill Effluent. Asian Fisheries Science, 16, 107–119. https://doi.org/10.33997/j.afs.2003.16.2.002.

Haniefah, U., Surya, I., & Burhanudin. (2019). Efektivitas Program Corporate Social Responsibility ( Csr ) Perusahaan Perkebunan Kelapa Sawit Pt . Tanjungmanis Arta Lestari. EJournal Ilmu Pemerintahan, 7(1), 3207–3220. https://ejournal.ip.fisip-unmul.ac.id/site/?p=3150.

Hidayah, N., & Wusko, I. U. (2020). Characterization and Analysis of Oil Palm Empty Fruit Bunch (OPEFB) Waste of PT Kharisma Alam Persada South Borneo. Majalah Obat Tradisional, 25(3), 154 – 160. https://doi.org/10.22146/mot.52715.

Muria, S. R., Chairul, C., & Naomi, D. C. (2020). Pemanfaatan Mikroalaga Chlorella sp. untuk Pengolahan Limbah Cair Kelapa Sawit UNTUK (POME) secara FED Batch. Jurnal Sains Dan Teknologi, 19(1), 7–12. https://doi.org/10.31258/jst.v19.n1.p7-12.

Mutjaba, G., Rizwan, M., & Lee, K. (2017). Removal of Nutrient and COD from Wastewater Using Symbiotic Co-Cultur of Bacterium Pseudomonas Putida and Immobilixed Microalga Chlorella Vulgaris. Journal of Industrial and Engineering, 49, 145–151. https://doi.org/10.1016/j.jiec.2017.01.021.

Phalakornkule, C., Mangmeemak, J., & Intrachod, B. (2010). Pretreatment of Palm Oil Mill Effluent by Electrocoagulation and Coagulation. Science Asia, 36, 142–149. https://doi.org/10.2306/scienceasia1513-1874.2010.36.142.

Prayitno, J. (2016). Pola Pertumbuhan dan Pemanenan Biomassa dalam Fotobioreaktor Mikroalga untuk Penangkapan Karbon. Jurnal Teknologi Lingkungan, 17(1), 45–52. https://doi.org/10.29122/jtl.v17i1.1464.

Selvika, Z., Kusuma, A. B., Herliany, N. E., & Negara, B. F. (2016). Pertumbuhan Chlorella sp. pada Beberapa Konsentrasi Limbah Batubara (The Growth Rate of the Chlorella sp. at Different Concentrations of Coal Waste Water). Depik, 5(3). https://doi.org/10.13170/depik.5.3.5576.

Singh, S, K., Bansal, A., Jha, M. K., & Dey, A. (2012). An Integrated Approach to Remove Cr(VI) using Immobilized Chlorellaminutissima Grown in Nutrient Rich Sewage Wastewater. Journal of Bioresource Technology, 104, v. https://doi.org/10.1016/j.biortech.2011.11.044.

Suplemen, P., Ajar, B., Berbasis, B., & Identifikasi, R. (2017). Pengembangan Suplemen Bahan Ajar Biologi Berbasis Riset Identifikasi Bakteri untuk Siswa SMA. Journal of Innovative Science Education, 6(2), 155–161. https://doi.org/10.15294/jise.v6i2.19713.

Zalfiatri, Y., Restuhadi, F., & Maulana, T. (2017). Pemanfaatan Simbiosis Mikroorganisme D-deco3 dan Mikroalga Chlorella sp untuk Menurunkan Pencemaran Limbah Cair Pabrik Kelapa Sawit. Dinamika Lingkungan Indonesia, 4(1), 8–17. https://doi.org/10.31258/dli.4.1.p.8-17.

Zhu, L., Wang, Z., Shu, Q., Takala, J., Hiltunen, E., Feng, P., & Yuan, Z. (2013). Nutrient Removal and Biodiesel Production by Integration of Freshwater Algae Cultivation with Piggery Wastewater Treatment. J Water Research, 47, 4294–4302. https://doi.org/10.1016/j.watres.2013.05.004.

Downloads

Published

2022-02-27

Issue

Section

Articles