Aplikasi Metode UV Spektroskopi dan Kemometrika untuk Diskriminasi Madu Flora dan Madu Ekstraflora

Authors

  • Diding Suhandy Universitas Lampung
  • Meinilwita Yulia Politeknik Negeri Lampung
  • Kusumiyati Kusumiyati Universitas Padjadjaran

DOI:

https://doi.org/10.23887/jstundiksha.v11i1.44757

Keywords:

UV spektroskopi, madu flora, madu ekstraflora, diskriminasi, uji keaslian

Abstract

Klasifikasi madu blossom dan madu honeydew menggunakan data spektra di panjang gelombang 190-400 nm belum dilakukan. Penelitian ini bertujuan untuk mengevaluasi penggunaan UV spektroskopi untuk klasifikasi madu flora yaitu madu Durian (Durio zibethinus) dan madu honeydew dari jenis ekstraflora yaitu madu Akasia (Acacia crassicarpa) dan madu Karet (Hevea brasiliensis) dari Indonesia. Sampel madu diencerkan dengan air distilasi dengan perbandingan 1:20 dan 1:30 (volume/volume) dan diteteskan sebanyak 3 mL ke dalam kuvet kuarsa. Spektra UV diukur menggunakan UV-visible spectrometer di rentang panjang gelombang 190-400 nm dengan interval 1 nm menghasilkan 211 variabel spektra. Model klasifikasi linear dibangun menggunakan metode linear discrimination analysis dan non-linear menggunakan metode support vector machine. Hasil penelitian menunjukkan kedua metode tersebut dapat digunakan untuk klasifikasi madu flora dan ekstraflora dengan nilai akurasi, sensitivitas, spesifisitas, presisi, dan koefisien korelasi Matthews sebesar 1 atau 100%. Hal ini menunjukkan aplikasi metode UV spektroskopi sebagai metode analisis yang cepat, ramah lingkungan dan harga relatif terjangkau untuk diskriminasi madu flora dan ekstraflora di Indonesia.

References

Alves, A., Ramos, A., Gonçalves, M. M., Bernardo, M., & Mendes, B. (2013). Antioxidant activity, quality parameters and mineral content of Portuguese monofloral honeys. Journal of Food Composition and Analysis, 30(2), 130–138. https://doi.org/10.1016/j.jfca.2013.02.009.

Alzahrani, H. A., Boukraa, L., Bellik, Y., Abdellah, F., Bakhotmah, B. A., Kolayli, S., & Sahin, H. (2012). Evaluation of the antioxidant activity of three varieties of honey from different botanical and geographical origins. Global Journal of Health Science, 4(6), 191–196. https://doi.org/10.5539/gjhs.v4n6p191.

Azevedo, M. S., Seraglio, S. K. T., Rocha, G., Balderas, C. B., Piovezan, M., Gonzaga, L. V., Falkenberg, D. de B., Fett, R., de Oliveira, M. A. L., & Costa, A. C. O. (2017). Free amino acid determination by GC-MS combined with a chemometric approach for geographical classification of bracatinga honeydew honey (Mimosa scabrella Bentham). Food Control, 78, 383–392. https://doi.org/10.1016/j.foodcont.2017.03.008.

Bentabol Manzanares, A., García, Z. H., Galdón, B. R., Rodríguez, E. R., & Romero, C. D. (2011). Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chemistry, 126(2), 664–672. https://doi.org/10.1016/j.foodchem.2010.11.003.

Bergamo, G., Seraglio, S. K. T., Gonzaga, L. V., Fett, R., & Costa, A. C. O. (2020). Use of visible spectrophotometric fingerprint and chemometric approaches for the differentiation of Mimosa scabrella Bentham honeydew honey. Journal of Food Science and Technology, 57(11), 3966–3972. https://doi.org/10.1007/s13197-020-04425-2.

Bergamo, G., Seraglio, S. K. T., Gonzaga, L. V., Fett, R., de Mello Castanho Amboni, R. D., Dias, C. O., & Costa, A. C. O. (2019). Differentiation of honeydew honeys and blossom honeys: a new model based on colour parameters. Journal of Food Science and Technology, 56(5), 2771–2777. https://doi.org/10.1007/s13197-019-03737-2.

Can, Z., Yildiz, O., Sahin, H., Akyuz Turumtay, E., Silici, S., & Kolayli, S. (2015). An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chemistry, 180, 133–141. https://doi.org/10.1016/j.foodchem.2015.02.024.

Castro-Vázquez, L., Díaz-Maroto, M. C., & Pérez-Coello, M. S. (2006). Volatile Composition and contribution to the aroma of spanish honeydew honeys. Identification of a new chemical marker. Journal of Agricultural and Food Chemistry, 54(13), 4809–4813. https://doi.org/10.1021/jf0604384.

Cortés, M. E., Vigil, P., & Montenegro, G. (2011). The medicinal value of honey: a review on its benefits to human health, with a special focus on its effects on glycemic regulation. Ciencia e Investigación Agraria, 38(2), 303–317. https://doi.org/10.4067/s0718-16202011000200015.

Da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051.

Durazzo, A., Lucarini, M., Plutino, M., Lucini, L., Aromolo, R., Martinelli, E., Souto, E. B., Santini, A., & Pignatti, G. (2021). Bee products: A representation of biodiversity, sustainability, and health. Life, 11(9), 1–32. https://doi.org/10.3390/life11090970.

Escuredo, O., Rodríguez-Flores, M. S., Meno, L., & Seijo, M. C. (2021). Prediction of physicochemical properties in honeys with portable near-infrared (Micronir) spectroscopy combined with multivariate data processing. Foods, 10(2). https://doi.org/10.3390/foods10020317.

Fechner, D. C., Hidalgo, M. J., Ruiz Díaz, J. D., Gil, R. A., & Pellerano, R. G. (2020). Geographical origin authentication of honey produced in Argentina. Food Bioscience, 33, 100483. https://doi.org/10.1016/j.fbio.2019.100483.

Ferreiro-González, M., Espada-Bellido, E., Guillén-Cueto, L., Palma, M., Barroso, C. G., & Barbero, G. F. (2018). Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Talanta, 188, 288–292. https://doi.org/10.1016/j.talanta.2018.05.095.

Frausto-Reyes, C., Casillas-Peñuelas, R., Quintanar-Stephano, J. L., Macías-López, E., Bujdud-Pérez, J. M., & Medina-Ramírez, I. (2017). Spectroscopic study of honey from Apis mellifera from different regions in Mexico. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 178, 212–217. https://doi.org/10.1016/j.saa.2017.02.009.

Harjo, S. S. T., Radiati, L. E., & Rosyidi, D. (2015). Perbandingan Madu Karet dan Madu Rambutan Berdasarkan Kadar Air, Aktivitas Enzim Diastase dan Hidroximetilfurfural (HMF). Jurnal Ilmu Dan Teknologi Hasil Ternak, 10(1), 18–21.

Karabagias, I. K., Vavoura, M. V., Nikolaou, C., Badeka, A. V., Kontakos, S., & Kontominas, M. G. (2014). Floral authentication of Greek unifloral honeys based on the combination of phenolic compounds, physicochemical parameters and chemometrics. Food Research International, 62, 753–760. https://doi.org/10.1016/j.foodres.2014.04.015.

Karoui, R., Dufour, E., Bosset, J. O., & De Baerdemaeker, J. (2007). The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland. Food Chemistry, 101(1), 314–323. https://doi.org/10.1016/j.foodchem.2006.01.039.

Kivima, E., Tanilas, K., Martverk, K., Rosenvald, S., Timberg, L., & Laos, K. (2021). The composition, physicochemical properties, antioxidant activity, and sensory properties of estonian honeys. Foods, 10(3), 1–14. https://doi.org/10.3390/foods10030511.

Lin, J. K., & Weng, M. S. (2006). Flavonoids as nutraceuticals. The Science of Flavonoids, 7(September), 213–238. https://doi.org/10.1007/978-0-387-28822-2_8.

Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571–577. https://doi.org/10.1016/j.foodchem.2004.10.006.

Meo, S. A., Al-Asiri, S. A., Mahesar, A. L., & Ansari, M. J. (2017). Role of honey in modern medicine. Saudi Journal of Biological Sciences, 24(5), 975–978. https://doi.org/10.1016/j.sjbs.2016.12.010.

Mohammed, M. E. A. (2020). Factors Affecting the Physicochemical Properties and Chemical Composition of Bee’s Honey. Food Reviews International, 00(00), 1–12. https://doi.org/10.1080/87559129.2020.1810701.

Orfanakis, E., Markoulidakis, M., Philippidis, A., Zoumi, A., & Velegrakis, M. (2021). Optical spectroscopy methods combined with multivariate statistical analysis for the classification of Cretan thyme, multi-floral and honeydew honey. Journal of the Science of Food and Agriculture, 101(13), 5337–5347. https://doi.org/10.1002/jsfa.11182.

Parri, E., Santinami, G., & Domenici, V. (2020). Front-face fluorescence of honey of different botanic origin: A case study from Tuscany (Italy). Applied Sciences (Switzerland), 10(5). https://doi.org/10.3390/app10051776.

Pita-Calvo, C., & Vázquez, M. (2017). Differences between honeydew and blossom honeys: A review. Trends in Food Science and Technology, 59, 79–87. https://doi.org/10.1016/j.tifs.2016.11.015.

Rehman, M. U., & Chong, K. T. (2020). DNA6mA-MINT: DNA-6mA modification identification neural tool. Genes, 11(8), 1–12. https://doi.org/10.3390/genes11080898.

Seraglio, S. K. T., Silva, B., Bergamo, G., Brugnerotto, P., Gonzaga, L. V., Fett, R., & Costa, A. C. O. (2019). An overview of physicochemical characteristics and health-promoting properties of honeydew honey. Food Research International, 119(December 2018), 44–66. https://doi.org/10.1016/j.foodres.2019.01.028.

Silici, S., Sarioglu, K., & Karaman, K. (2013). Determination of polyphenols of some turkish honeydew and nectar honeys using HPLC-DAD. Journal of Liquid Chromatography and Related Technologies, 36(16), 2330–2341. https://doi.org/10.1080/10826076.2012.720332.

Simova, S., Atanassov, A., Shishiniova, M., & Bankova, V. (2012). A rapid differentiation between oak honeydew honey and nectar and other honeydew honeys by NMR spectroscopy. Food Chemistry, 134(3), 1706–1710. https://doi.org/10.1016/j.foodchem.2012.03.071.

Suhandy, D., & Yulia, M. (2021a). The use of UV spectroscopy and SIMCA for the authentication of Indonesian honeys according to botanical, entomological and geographical origins. Molecules, 26(4). https://doi.org/10.3390/molecules26040915.

Suhandy, D., & Yulia, M. (2021b). Uji Keaslian Madu Lebah Hutan Apis Dorsata Dari Nektar Uniflora Acacia Mangium Menggunakan Spektroskopi Ultraviolet Dan Kemometrika. Jurnal Teknologi Pertanian, 22(1), 25–34.

Ustadi, Radiati, L. E., & Thohari, I. (2017). Komponen Bioaktif pada Madu Karet (Hevea brasiliensis) Madu Kaliandra (Calliandra callothyrsus) dan Madu Randu (Ceiba pentandra). Jurnal Ilmu Dan Teknologi Hasil Ternak, 12(2), 97–102.

Xagoraris, M., Lazarou, E., Kaparakou, E. H., Alissandrakis, E., Tarantilis, P. A., & Pappas, C. S. (2021). Botanical origin discrimination of Greek honeys: physicochemical parameters versus Raman spectroscopy. Journal of the Science of Food and Agriculture, 101(8), 3319–3327. https://doi.org/10.1002/jsfa.10961.

Zhao, Z., Chen, L., Liu, F., Zhou, F., Peng, J., & Sun, M. (2020). Fast classification of geographical origins of honey based on laser-induced breakdown spectroscopy and multivariate analysis. Sensors (Switzerland), 20(7). https://doi.org/10.3390/s20071878.

Downloads

Published

2022-03-14

How to Cite

Suhandy, D., Yulia, M., & Kusumiyati, K. (2022). Aplikasi Metode UV Spektroskopi dan Kemometrika untuk Diskriminasi Madu Flora dan Madu Ekstraflora. JST (Jurnal Sains Dan Teknologi), 11(1), 204–212. https://doi.org/10.23887/jstundiksha.v11i1.44757

Issue

Section

Articles