Efek Penambahan Tepung Jagung dalam Keramik Zeolit Sebagai Separator Baterai
DOI:
https://doi.org/10.23887/jstundiksha.v11i2.45268Keywords:
Keramik Zeolit, Separator Baterai, Tepung JagungAbstract
Separator baterai yang terbuat dari keramik zeolit telah dilakukan. Separator ini dimungkinkan menjadikan baterai yang stabil dan tahan lama. Penelitian ini bertujuan untuk menganalisis tegangan yang dihasilkan dari aki yang separatornya diganti dengan keramik zeolit alam. Penelitian ini menggunakan metode eksperimental. Teknik analisis data menggunakan analisis kuantitatif dan kualitatif. Hasil penelitian menunjukkan proses persiapan bahan dengan pengayakan serbuk zeolit dan tepung jagung dengan ayakan mesh 30. Serbuk zeolit ditambahkan 2, 5 dan 8 % berat tepung jagung. Bahan serbuk zeolit-tepung jagung dicetak berbentuk prisma segi empat dengan tekanan 15 MPa. Green keramik dibakar dengan furnace selama 4 jam dengan suhu 900 ⁰C. Keramik berpori di assembling ke baterai bersama anoda katoda kemudian dirangkai secara seri. Cairan sebesar 10 ml digunakan untuk mengisi rongga keramik berpori tersebut. Hasil pengujian tegangan listrik menunjukkan semakin tinggi penambahan tepung jagung semakin rendah voltase yang dihasilkan. Berdasarkan pengujian secara visual dan mikro di dapat bahwa semakin banyak persentase campuran tepung jagungnya maka semakin banyak pula pori yang terdapat pada keramik serta mengurangi kerapatan pada keramik. Implikasi penelitian ini diharapkan separator keramik zeolit alam dapat dipakai pada baterai aki dengan peningkatan sifat sifik dan ionik konduktifitas.
References
Ackley, M. W., Rege, S. U., & Saxena, H. (2003). Application of natural zeolites in the purification and separation of gases. Microporous and Mesoporous Materials, 61(1–3), 25–42. https://doi.org/10.1016/S1387-1811(03)00353-6.
Aini, N., Wijonarko, G., & Sustriawan, B. (2016). Sifat Fisik, Kimia, Dan Fungsional Tepung Jagung Yang Diproses Melalui Fermentasi (Physical, Chemical, and Functional Properties of Corn Flour Processed by Fermentation). Jurnal Agritech, 36(02), 160. https://doi.org/10.22146/agritech.12860.
Alag, H. K., & Zamel, R. S. (2018). Studying the Properties of Porous Alumina Using Starch as a Binder. Journal of Al-Nahrain University of Science, 21(3), 112–118. https://doi.org/10.22401/jnus.21.3.13.
Alam, N., & Nurhaeni. (2008). Pati Jagung Berbagai Varietas Yang Diekstrak Dengan Pelarut Natrium Bikarbonat. Jurnal Agroland, 15(2), 89–94.
Apriani, R., Diah Faryuni, I., Wahyuni, D., Kunci, K., Aktif, K., Durian, K., Hidroksida, K., & Fe, A. (2013). Pengaruh Konsentrasi Aktivator Kalium Hidroksida (KOH) terhadap Kualitas Karbon Aktif Kulit Durian sebagai Adsorben Logam Fe pada Air Gambut. Prisma Fisika, I(2), 82–86. https://jurnal.untan.ac.id/index.php/jpfu/article/view/2931.
Ayala-Landeros, J. G., Saucedo-Rivalcoba, V., Bribiesca-Vasquez, S., Castaño, V. M., Martínez-Hernández, A. L., & Velasco-Santos, C. (2016). Influence of corn flour as pore forming agent on porous ceramic material based mullite: Morphology and mechanical properties. Science of Sintering, 48(1), 29–39. https://doi.org/10.2298/SOS1601029A.
Barbosa, J. C., Gonçalves, R., Costa, C. M., De Zea Bermudez, V., Fidalgo-Marijuan, A., Zhang, Q., & Lanceros-Méndez, S. (2021). Metal-organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances, 2(12), 3790–3805. https://doi.org/10.1039/d1ma00244a.
Buwono, A., & Febrian, S. (2020). The Aluminimum Air Battery Performace by Using Red Brick As The Cathode to Turn on The Led Lights. X(2), 86–91.
Cannarella, J., Liu, X., Leng, C. Z., Sinko, P. D., Gor, G. Y., & Arnold, C. B. (2014). Mechanical Properties of a Battery Separator under Compression and Tension. Journal of The Electrochemical Society, 161(11), F3117–F3122. https://doi.org/10.1149/2.0191411jes.
Chen, D., Wang, X., Liang, J., Zhang, Z., & Chen, W. (2021). A novel electrospinning polyacrylonitrile separator with dip-coating of zeolite and phenoxy resin for Li-ion batteries. Membranes, 11(4). https://doi.org/10.3390/membranes11040267.
Chen, W., Wang, X., Liang, J., Chen, Y., Ma, W., & Zhang, S. (2022). A High Performance Polyacrylonitrile Composite Separator with Cellulose Acetate and Nano-Hydroxyapatite for Lithium-Ion Batteries. Membranes, 12(2). https://doi.org/10.3390/membranes12020124.
E. Indra. (2013). Studi Kekuatan Dielektrik Pada Bahan Campuran Abu Sekam Padi Dengan Resin Epoksi. Jurnal Teknik Elektro Universitas Tanjungpura (Jurnal Untan), 1(1), 4.
Krishna, R. N. (2020). Design and Development of Aluminium Air Battery. International Journal for Research in Applied Science and Engineering Technology, 8(8), 380–382. https://doi.org/10.22214/ijraset.2020.30904.
Li, A., Chun, A., Yuen, Y., Wang, W., Miguel, I., Cordeiro, D. C., Wang, C., Bo, T., Chen, Y., Zhang, J., Chan, Q. N., & Yeoh, G. H. (2021). A Review on Lithium-Ion Battery Separators towards EnhancedSafety Performances and Modelling Approaches. Molecules, 26(478), 2–15. https://doi.org/https://doi.org/10.3390/molecules26020478.
Li, Y., Wang, X., Liang, J., Wu, K., Xu, L., & Wang, J. (2020). Design of a high performance zeolite/polyimide composite separator for lithium-ion batteries. Polymers, 12(4). https://doi.org/10.3390/POLYM12040764.
Liu, F., & Chuan, X. (2021). Recent developments in natural mineral-based separators for lithium-ion batteries. RSC Advances, 11(27), 16633–16644. https://doi.org/10.1039/d1ra02845f.
Liu, X., Yu, C., Qu, D., & Luo, X. (2022). Preparation of porous β-SiAlON ceramics using corn starch as pore-forming agent. Journal of the Australian Ceramic Society 2022, 1–7. https://doi.org/10.1007/S41779-022-00708-3.
Martucci, A., & Cruciani, G. (2018). New Insights in Stability, Structure and Properties of Porous Materials. In New Insights in Stability, Structure and Properties of Porous Materials. https://doi.org/10.3390/books978-3-03842-451-2.
Maulana, I., Aripin, & Chobir, A. (2019). Studi Elektrokimia Baterai Aluminium-. Journal of Energy and Electrical Engineering (JEEE), 01(01), 25–28. https://doi.org/https://doi.org/10.37058/jeee.v1i1.1193.
Miao, J., Lang, Z., Xue, T., Li, Y., Li, Y., Cheng, J., Zhang, H., & Tang, Z. (2020). Revival of Zeolite-Templated Nanocarbon Materials: Recent Advances in Energy Storage and Conversion. Advanced Science, 7(20), 1–32. https://doi.org/10.1002/advs.202001335.
Mohamed Bazin, M., Ahmad, N., & Nakamura, Y. (2019). Preparation of porous ceramic membranes from Sayong ball clay. Journal of Asian Ceramic Societies, 7(4), 417–425. https://doi.org/10.1080/21870764.2019.1658339.
Nie, Z., & Lin, Y. (2015). Fabrication of porous alumina ceramics with corn starch in an easy and low-cost way. Ceramics - Silikaty, 50(4), 348–352.
Pakpahan, J. K., Karo, P. K., & Suroto, B. J. (2017). Studi Luas Permukaan Spesifik Zeolit Akibat Pengaruh Mikrostruktur dan Potensinya Sebagai Elektrode Superkapasitor. Jurnal Teori Dan Aplikasi Fisika, 5(1), 19–24.
Pan, W., Wang, Y., Kwok, H. Y. H., & Leung, D. Y. C. (2019). A low-cost portable cotton-based aluminum-air battery with high specific energy. Energy Procedia, 158, 179–185. https://doi.org/10.1016/j.egypro.2019.01.067.
Pavlov, D. (2011). Lead-Acid Batteries: Science and Technology. Lead-Acid Batteries: Science and Technology. https://doi.org/10.1016/C2009-0-16975-1.
Pavlov, D., Naidenov, V., & Ruevski, S. (2006). Influence of H2SO4 concentration on lead-acid battery performance. H-type and P-type batteries. Journal of Power Sources, 161(1), 658–665. https://doi.org/10.1016/J.JPOWSOUR.2006.03.081.
Porvali, A. ;, Chernyaev, A. ;, Shukla, S. ;, Lundström, M., Porvali, A., Chernyaev, A., & Shukla, S. (2019). Lithium ion battery active material dissolution kinetics in Fe(II)/Fe(III) catalyzed Cu-H2SO4 leaching system Lithium ion battery active material dissolution kinetics in Fe(II)/Fe(III) catalyzed Cu-H 2 SO 4 leaching system. https://doi.org/10.1016/j.seppur.2019.116305.
Rahaman, M. N. (2017). Ceramic processing and sintering, second edition. Ceramic Processing and Sintering, Second Edition, 1–875. https://doi.org/10.1201/9781315274126.
Respati, S. M. B., Soenoko, R., Irawan, Y. S., & Suprapto, W. (2018). Interfacial shear stress with pull-out test at zeolite ceramic matrix and SS316 single fiber. Revista Materia, 23(1). https://doi.org/10.1590/s1517-707620170001.0316.
Respati, S. M. B., Soenoko, R., Irawan, Y. S., Suprapto, W., Saputra, W. B., & Purwanto, H. (2017). Capillary velocity of natural zeolite porous ceramic in different sintering temperatures. MM Science Journal, 2017(JUNE), 1803–1805. https://doi.org/10.17973/MMSJ.2017_06_2016104.
Respati, S. M. B., Soenoko, R., Irawan, Y. S., Suprapto, W., Wicaksono, D. K., & Purwanto, H. (2018). The effect of palm fibers addition on density, porosity, water discharge and TDS of the natural zeolite ceramic. AIP Conference Proceedings, 1977. https://doi.org/10.1063/1.5042927.
Salman, M. M., Radhi, N. S., Sabr, O. H., & Nhabih, H. T. (2020). Utilization of diverse cheap materials as pore generating agent to manufacture low-cost porous ceramic. Ceramica, 66(378), 179–185. https://doi.org/10.1590/0366-69132020663782873.
Schoetz, T., de Leon, C. P., Ueda, M., & Bund, A. (2017). Perspective—State of the Art of Rechargeable Aluminum Batteries in Non-Aqueous Systems. Journal of The Electrochemical Society, 164(14), A3499–A3502. https://doi.org/10.1149/2.0311714jes.
Song, Y., Sheng, L., Wang, L., Xu, H., & He, X. (2021). From separator to membrane: Separators can function more in lithium ion batteries. Electrochemistry Communications, 124, 106948. https://doi.org/10.1016/J.ELECOM.2021.106948.
Syarif, N. (2014). Performance of biocarbon based electrodes for electrochemical capacitor. Energy Procedia, 52, 18–25. https://doi.org/10.1016/j.egypro.2014.07.050.
Takeda, Y., & Taguchi, K. (2018). Proposal of NaALO2 as an electrolyte of aluminum-air battery. Journal of Fundamental and Applied Sciences, 10(3S), 793–800. https://doi.org/10.4314/jfas.v10i3S.68.
Tseng, K. H., Chang, C. C., Lou, S. J., & Chen, W. P. (2013). Attitudes Towards Science, Technology, Engineering and Mathematics (STEM) in a Project Based Learning (PjBL) Environment. International Journal Technology and Design Education, 23, 87–102. https://doi.org/10.1007/s10798-011-9160-x.
Verayana, Paputungan, M., & Iyabu, H. (2018). Pengaruh aktivator HCl dan H 3PO4 terhadap karakteristik (morfologi pori) arang aktif tempurung kelapa serta uji adsorpsi pada logam timbal (Pb). Jurnal Entropi, 13(1), 67–75. https://www.neliti.com/publications/277418/pengaruh-aktivator-hcl-dan-h3po4-terhadap-karakteristik-morfologi-pori-arang-akt.
Weber, C. J., Geiger, S., & Falusi, S. (2014). Material review of Li ion battery separators. Packaging-Materials Review AIP Conference Fundamental Principals of Battery Design: Porous Electrodes AIP Conference, 1597, 26. https://doi.org/10.1063/1.4878480.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Sri Mulyo Bondan Respati, Agung Nugroho, Ahmad Abdul Rohim, Moch Subchan Mauludin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)