Changes in Rainfall Intensity, Rising Air Temperature, Wind Speed, and Its Relationship with Land Use in Makassar City


  • Didiharyono D. IBK Nitro Makassar
  • Giarno Giarno State College of Meteorology Climatology and Geophysics, Tangerang, Indonesia
  • Sukriming Sapareng Universitas Andi Djemma



Trend Analysis, High Intensity Rainfall, Air Temperature, Wind Speed, Landuse Changes.


Makassar City is one of the big cities that is growing very rapidly in Indonesia which has a large coastal area. This city is very vulnerable to the impact of changes in climate variables such as rainfall, temperature and wind speed, especially when there are indications of massive land use changes. The aim of the research is to identify changes in the trend of high-intensity rainfall, changes in air temperature, wind speed, and their relationship to changes in land use in Makassar City which have an impact on climate change. Observation data at Maritime Meteorological Station of Paotere, Makassar for 30 years is used to detect changes in climate variables by using slope calculations on linear equations, line graphs, and boxplots. The results showed that the air temperature in Makassar has a lower increasing (0.06oC/year) than Indonesian region which is around 0.3 oC. The slope values at 07.00 WITA, 13.00 WITA, and 18.00 WITA representing temperatures in the morning, afternoon, and evening are 0.0387, 0.0476, and 0.0417. While the average slope of air temperature is 0.042. However, Rising of air temperature is followed by a decrease in the accumulation of annual rainfall to below 3000 mm/year. In addition, heavy rains that cause flooding, increasing the maximum wind speed also need to be observed because wind speed is one of the causes of hydrometeorological disasters that often occur.


Abram, N. J., Henley, B. J., Gupta, A. Sen, Lippmann, T. J. R., Clarke, H., Dowdy, A. J., Sharples, J. J., Nolan, R. H., Zhang, T., Wooster, M. J., Wurtzel, J. B., Meissner, K. J., Pitman, A. J., Ukkola, A. M., Murphy, B. P., Tapper, N. J., & Boer, M. M. (2021). Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth and Environment, 2(1), 1–11.

Allan, R. P., & Soden, B. J. (2008). Atmospheric Warming and the Amplification of Precipitation Extremes. Science, 321(5895), 1481–1484.

Andris, F. M., Kaelan, C., & Nurdin, A. (2020). Relationship between Knowledge, Attitudes and Practices of BPBD Officers with Optimization of Flood Disaster Management in Makassar City. STRADA Jurnal Ilmiah Kesehatan, 9(2), 861–871.

Barkey, R., Nursaputra, M., Mappiase, M. F., Achmad, M., Solle, M., & Dassir, M. (2019). Climate change impacts related flood hazard to communities around Bantimurung Bulusaraung National Park, Indonesia. IOP Conference Series: Earth and Environmental Science, 235(1).

Boer, R., & Faqih, A. (2004). Current and future rainfall variability in Indonesia, An Integrated Assessment of Climate Change Impacts, Adaptation and Vulnerability in Watershed Areas and Communities in Southeast Asia. Report from AIACC Project No AS21. Int. START Secretariat. Washington, DC.

Chan, S. C., Kahana, R., Kendon, E. J., & Fowler, H. J. (2018). Projected changes in extreme precipitation over Scotland and northern Englandusing a high-resolution regional climate model. Climate Dynamics, 51(1), 3559–3577.

Christis, M., Athanassiadis, A., & Vercalsteren, A. (2019). Implementation at a City Level of Circular Economy Strategies and Climate Change Mitigation–the Case of Brussels. Journal of Cleaner Production, 218(1), 511–520.

Cipto, H. (2019). BPBD: 78 Orang Tewas dan 3 Hilang akibat Banjir dan Longsor di Sulsel. Https://Regional.Kompas.Com/Read/2019/01/30/14331581/Bpbd-78-Orang-Tewas-Dan-3-Hilang-Akibat-Banjir-Dan-Longsor-Di-Sulsel.

Didiharyono, D., & Giarno, G. (2021). Application of the simple verification method to estimate the weather at makassar maritime station, Indonesia. Walailak Journal of Science and Technology, 18(18), 1–12.

Didiharyono, D., & Kasse, I. (2021). Mathematical Modelling of Deforestation Due to Population Density and Industrialization. Jurnal Varian, 5(1), 9–16.

Djalante, R. (2018). A Systematic Literature Review of Research Trends and Authorships on Natural Hazards, Disasters, Risk Reduction and Climate Change in Indonesia. Natural Hazards and Earth System Sciences, 18(6), 1785–1810.

Giarno. (2021). Clustering pandemic covid-19 and relationship to temperature and relative humidity among the tropic and subtropic region. Walailak Journal of Science and Technology, 18(17), 1–13.

Giarno, G., Didiharyono, D., Fisu, A. A., & Mattingaragau, A. (2020). Influence Rainy and Dry Season to Daily Rainfall Interpolation in Complex Terrain of Sulawesi. IOP Conference Series: Earth and Environmental Science, 469(1).

Hafil, M. (2019). BPBD Hitung Kerugian Banjir di Sulsel. Https://Www.Republika.Co.Id/Berita/Nasional/Daerah/19/01/28/Pm1oor430-Bpbd-Hitung-Kerugian-Banjir-Di-Sulsel.

Hajjarpoor, A., Soltani, A., Zeinali, E., & Sayyedi, F. (2014). Simulating Climate Change Impacts on Production of Chickpea Under Water-Limited Conditions. Agriculture Science Developments, 3(6), 209–217.

Haryanto, B. (2018). Climate Change and Urban Air Pollution Health Impacts in Indonesia. Springer Climate, December 2017, 215–239.

Hasegawa, T., & Matsuoka, Y. (2015). Climate Change Mitigation Strategies in Agriculture and Land Use in Indonesia. Mitigation and Adaptation Strategies for Global Change, 20(3), 409–424.

Hegerl, G. C., Brönnimann, S., Cowan, T., Friedman, A. R., Hawkins, E., Iles, C., Müller, W., Schurer, A., & Undorf, S. (2019). Causes of Climate Change Over the Historical Record. Environmental Research Letters, 14(12), 1–25.

Hu, Z., Wang, L., Wang, Z., Hong, Y., & Zheng, H. (2015). Quantitative assessment of climate and human impacts on surface water resources in a typical semi-arid watershed in the middle reaches of the yellow river from 1985 to 2006. International Journal of Climatology, 35(1), 97–113.

IFRC. (2019). Indonesia: Flash Floods and Landslides in South Sulawesi Province. Information Bulletin, Glide n° F.

IFRC. (2021). Indonesia: Indonesia, Flooding in Makasar City (South Sulawesi) (7 Dec 2021). Information Bulletin, Glide n° AHA-FL-2021-001072-IDN.

IPCC. (2021). Climate Change 2021: The Physical Science Basis. IPCC Sixth Assessment Report.

Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., & Chan, S. C. (2016). Do Convection-Permitting regional climate models improve projections of future precipitation change? Bulletin of the American Meteorological Society, 98(1), 79–93.

Kuswanto, H., Setiawan, D., & Sopaheluwakan, A. (2019). Clustering of Precipitation Pattern in Indonesia using TRMM Satellite Data. Engineering, Technology & Applied Science Research, 9(4), 4484–4489.

Lolokada, T. W., Rogi, O. H. A., & Poluan, R. J. (2021). Tipologi Urban Sprawl Berdasarkan Atribut Kontinuitas Area Terbangun di Kecamatan Biringkanaya dan Kecamatan Tamalanrea, Kota Makassar. Jurnal Spasial, 8(2), 164–173.

Malino, C. R., Arsyad, M., & Palloan, P. (2021). Analisis parameter curah hujan dan suhu udara dikota Makassar terkait fenomena perubahan iklim. Jurnal Sains Dan Pendidikan Fisika (JSPF), 17(2), 139–145.

Novika, F., Maulidi, I., Marsanto, B., & Amalina, A. N. (2022). Comparasion Model Analysis Time of Earthquake Occurrence in Indonesia based on Hazard Rate with Single Decrement Method. JTAM (Jurnal Teori Dan Aplikasi Matematika), 6(1), 163–176.

Oktaviani, R., Amaliah, S., Ringler, C., Rosegrant, M. W., & Sulser, T. B. (2011). The Impact of Global Climate Change on the Indonesian Economy. Food Policy Research Inst.

Rudiarto, I., Handayani, W., & Setyono, J. S. (2018). A regional perspective on urbanization and climate-related disasters in the northern coastal region of central Java, Indonesia. Land, 7(1).

Sayadi, A., Beydokhti, N. T., Najarchi, M., & Najafizadeh, M. (2019). Investigation into the Effects of Climatic Change on Temperature, Rainfall, and Runoff of the Doroudzan Catchment, Iran, Using the Ensemble Approach of CMIP3 Climate Models. Advances in Meteorology, 2019(1), 6357912.

Sipayung, S. B., Nurlatifah, A., Siswanto, B., & Slamet, L. (2018). Analysis of climate change impact on rainfall pattern of Sambas district, West Kalimantan. IOP Conf. Ser.: Earth Environ. Sci., 149(1), 012029.

Strauss, B. H., Orton, P. M., Bittermann, K., Buchanan, M. K., Gilford, D. M., Kopp, R. E., Kulp, S., Massey, C., Moel, H. de, & Vinogradov, S. (2021). Economic damages from Hurricane Sandy attributable to sea level rise caused by anthropogenic climate change. Nature Communications, 12(1), 1–9.

Suryarandika, R. (2020). Bencana Banjir Landa Kabupaten Jeneponto dan Bantaeng. Https://Republika.Co.Id/Berita/Qbuuq0354/Bencana-Banjir-Landa-Kabupaten-Jeneponto-Dan-Bantaeng.

Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports, 10(1), 1–10.

Thoban, M. I., & Hizbaron, D. R. (2020). Urban resilience to floods in parts of Makassar, Indonesia. E3S Web of Conferences, 200(1), 01007.

Wiweka, W. (2014). Pola Suhu Permukaan Dan Udara Menggunakan Citra Satelit Landsat Multitemporal. Jurnal Ecolab, 8(1), 11–22.

Zhao, Y., Deng, L., Li, Z., & Wang, Y. (2022). Quantitative Attribution of Vertical Motion Responsible for Summer Heavy Rainfall Over North China. Journal of Geophysical Research: Atmospheres, 127(2), 1–10.

Zikra, M., Suntoyo, & Lukijanto. (2015). Climate Change Impacts on Indonesian Coastal Areas. Procedia Earth and Planetary Science, 14(1), 57–63.