Reduksi Kadar Amoniak Limbah Cair Industri Karet pada Airlift Bioreaktor dengan Bakteri Brevundimonas diminuta

Penulis

  • Enggal Nurisman Universitas Sriwijaya, Palembang, Indonesia
  • Alhafiz Pratama Universitas Sriwijaya, Palembang, Indonesia
  • Suci Indah Rizki Universitas Sriwijaya, Palembang, Indonesia
  • Rosmania Universitas Sriwijaya, Palembang, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i2.48396

Kata Kunci:

Limbah Cair, Industri Karet, Brevundimonas diminuta, Amoniak

Abstrak

Perkembangan industri karet yang semakin pesat saat ini menimbulkan dampak terhadap aspek pengelolaan limbah cair industri. Salah satu unsur pencemar yang sering kali terkandung di dalam limbah industri karet adalah amoniak. Amoniak beracun, membahayakan kemampuan ekosistem akuatik untuk bertahan hidup. Penelitian ini menguji kemampuan isolat bakteri Brevundimonas diminuta dalam menurunkan kadar amoniak pada limbah cair pabrik karet. Proses pengolahan secara biologis menggunakan airlift bioreaktor yang telah dirancang sedemikian rupa dengan rasio inokulum bakteri Brevundimonas diminuta sebanyak 5%. Data berupa DO dan populasi bakteri diobservasi berturut-turut menggunakan DO meter mikroskop stereo, sedangkan kadar amoniak diuji dengan metode nessler. Aliran udara pada bioreaktor disuplai oleh aerator dengan laju aliran bervariasi (L/menit): 1,5; 3; dan 4.5 dan waktu aerasi  bervariasi selama (jam): 1,5; 3; 4,5; dan 6. Semakin lama waktu aerasi yang dilakukan maka nilai DO dan reduksi kadar amoniak akan semakin meningkat pula. Berdasarkan hasil analisis, bahwa B. diminuta dapat mereduksi kadar amoniak pada limbah cair industri karet dengan kondisi optimum penurunan kadar amoniak sebesar 85,05% dari 4,28 mg/L hingga 0,64 mg/L pada variasi laju alir udara 3 L/menit selama 4,5 jam.

Referensi

Ali, A., Li, M., Su, J., Li, Y., Wang, Z., Bai, Y., & Shaheen, S. M. (2022). Brevundimonas diminuta isolated from mines polluted soil immobilized cadmium (Cd2+) and zinc (Zn2+) through calcium carbonate precipitation: microscopic and spectroscopic investigations. Science of the Total Environment, 813, 152668. https://doi.org/10.1016/j.scitotenv.2021.152668.

Bai, L. D. Y. (2019). Comparison of Charity and Project-Based Service Learning Models on Knowledge Outcomes of Dietetic Students in a Community Nutrition Course. Journal of the Academy of Nutrition and Dietetics, 119(10), A124. https://doi.org/10.1016/j.jand.2019.08.082.

Bian, R., Shi, W., Duan, Y., & Chai, X. (2019). Effect of soil types and ammonia concentrations on the contribution of ammonia-oxidizing bacteria to CH4 oxidation. Waste Management & Research, 37(7), 698–705. https://doi.org/10.1177/0734242X19843988.

Chamem, O., Fellner, J., & Zairi, M. (2020). Ammonia inhibition of waste degradation in landfills–A possible consequence of leachate recirculation in arid climates. Waste Management & Research, 38(10), 1078–1086. https://doi.org/10.1177/0734242X20920945.

Dey, S., Charan, S. S., Pallavi, U., Sreenivasulu, A., & Haripavan, N. (2022). The Removal Of Ammonia From Contaminated Water By Using Various Solid Waste Biosorbents. Energy Nexus, 7, 100119. https://doi.org/10.1016/j.nexus.2022.100119.

Diarti, M. W., & Tatontos, E. Y. (2020). Pengaruh Lama Waktu Inkubasi Terhadap Morfologi Bakteri Neisseria gonorrhoeae. Jurnal Kesehatan Poltekkes Kemenkes Ri Pangkalpinang, 7(2), 36–41. https://doi.org/10.32922/jkp.v7i2.83.

Ding, J., Gao, Q., Wang, Y., Zhao, G., Wang, K., Jiang, J., Li, J., & Zhao, Q. (2020). Simulation and prediction of electrooxidation removal of ammonia and its application in industrial wastewater effluent. Water Environment Research, 93(1), 51–60. https://doi.org/10.1002/wer.1343

Ghavam, S., Taylor, C. M., & Styring, P. (2021). The Life Cycle Environmental Impacts Of A Novel Sustainable Ammonia Production Process From Food Waste And Brown Water. Journal of Cleaner Production, 320, 128776. https://doi.org/10.1016/j.jclepro.2021.128776.

Harahap, N. H. P., & Segoro, B. A. (2018). Analisis Daya Saing Komoditas Karet Alam Indonesia ke Pasar Alobal. TRANSBORDERS: International Relations Journal, 1(2), 130–143. https://doi.org/10.23969/transborders.v1i2.992.

He, C., Ren, X., Xu, G., Huang, Z., Wang, Y., Hu, Z., & Wang, W. (2021). Performance of single‐stage partial nitritation and anammox reactor treating low‐phenol/ammonia ratio wastewater and analysis of microbial community structure. Water Environment Research, 93(10), 1969–1978. https://doi.org/10.1002/wer.1568.

Huang, J., Liu, S., Hassan, S. G., Xu, L., & Huang, C. (2021). A hybrid model for short-term dissolved oxygen content prediction. Computers and Electronics in Agriculture, 186, 106216. https://doi.org/10.1016/j.compag.2021.106216.

Indrayani, S., & Ismed, I. (2021). Perbandingan Total Koloni Bakteri Asam Laktat, Total Koloni Bakteri Aerob dan Keasaman Asi yang di simpan Pada Suhu Freezer (-15° C) dan Suhu Refrigerator (4° C). Jurnal Pendidikan Tambusai, 5(3), 10400–10405.

K. Dwiningsih, sukarmin, M. (2018). Developing Chemical Instructional Media Using Virtual Laboratory Media based on the Global Era Learning Paradigm. Teknologi Pendidikan, 06(02), 156–176.

Kismiati, D. (2020). Implementasi E-Modul Pengayaan Isolasi dan Karakterisasi Bakteri dalam Meningkatkan Kemandirian Belajar Siswa SMA. Jurnal Pendidikan Biologi, 1(1), 1–10. https://doi.org/10.35719/alveoli.v1i1.1.

Liu, X., Kim, M., & Nakhla, G. (2018). Performance and Kinetics of Nitrification of Low Ammonia Wastewater at Low Temperature: Liu et al. Water Environment Research, 90(6), 498–509. https://doi.org/10.2175/106143017X14902968254818.

Mavropoulou, A. M., Vervatis, V., & Sofianos, S. (2020). Dissolved oxygen variability in the Mediterranean Sea. Journal of Marine Systems, 208, 103348. https://doi.org/10.1016/j.jmarsys.2020.103348.

Nurisman, E., Alkahfi, M. I., Razikah, Y. A., Rahmatullah, R., Haryani, N., & Rosmania, R. (2022). Potential Utilization of Brevundimonas diminuta to Reduce Ammonia in Wastewater. Key Engineering Materials, 920, 7–13. https://doi.org/10.4028/p-vhs848.

Prabarini, N., & Okayadnya, D. (2014). Penyisihan Logam Besi (Fe) Pada Air Sumur Dengan Karbon Aktif Dari Tempurung Kemiri. Envirotek : Jurnal Ilmiah Teknik Lingkungan, 5(2), 33–41. http://eprints.upnjatim.ac.id/6807/.

Prahutama, P., & Purnomo, Y. S. (2018). Pengolahan Limbah Cair Industri Penyamakan Kulit Dengan Adsorpsi Abu Terbang Bagas. Jurnal Envirotek, 10(1), 5–10. https://doi.org/10.33005/envirotek.v10i1.1152.

Putri, W. A. E., Purwiyanto, A. I. S., Fauziyah, Agustriani, F., & Suteja, Y. (2019). Kondisi Nitrat, Nitrit, Amonia, Fosfat Dan Bod Di Muara Sungai Banyuasin, Sumatera Selatan. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 11(1), 65–74. https://doi.org/10.29244/jitkt.v11i1.18861.

Rathi, M., & Yogalakshmi, K. N. (2021). Brevundimonas diminuta MYS6 associated Helianthus annuus L. for enhanced copper phytoremediation. Chemosphere, 263, 128195. https://doi.org/10.1016/j.chemosphere.2020.128195.

Riwukore, J. R., Yani, A., Fuah, A. M., Abdullah, L., Priyanto, R., Purwanto, B. P., Habaora, F., & Susanto, Y. (2021). Analysis of Production Capacity and Consumption Level of Beef in East Nusa Tenggara Province of Indonesia. Jurnal Ilmu Dan Teknologi Peternakan, 9(1), 6–13. https://doi.org/10.20956/jitp.v9i1.9531.

Saravanan, S., Kumar, P. S., Chitra, B., & Rangasamy, G. (2022). Biodegradation of textile dye Rhodamine-B by Brevundimonas diminuta and screening of their breakdown metabolites. Chemosphere, 308, 136266. https://doi.org/10.1016/j.chemosphere.2022.136266.

Sari Dewi, D., Eko Prasetyo, H., & Karnadeli, E. (2020). Pengolahan Air Limbah Industri Karet Remah (Crumb Rubber) Dengan Menggunakan Reagen Fenton. Jurnal Redoks, 5(1), 47. https://doi.org/10.31851/redoks.v5i1.4120.

Taukhid, T., Rufi’i, R., & Karyono, H. (2022). Pengembangan Media Flipbook Panduan Pelayanan Terapi Oksigen Hiperbarik. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 7(1), 74–81. https://doi.org/10.29100/jipi.v7i1.2439.

Wang, X., Wang, X., Liu, M., Zhou, L., Gu, Z., & Zhao, J. (2016). Bioremediation of marine oil pollution by Brevundimonas diminuta: effect of salinity and nutrients. Desalination and Water Treatment, 57(42), 19768–19775. https://doi.org/10.1080/19443994.2015.1106984.

Xu, B., & He, Z. (2021). Ammonia recovery from simulated anaerobic digestate using a two‐stage direct contact membrane distillation process. Water Environment Research, 93(9), 1619–1626. https://doi.org/10.1002/wer.1545.

Zhao, W., Vermace, R. R., Mattes, T. E., & Just, C. (2021). Impacts of ammonia loading and biofilm age on the prevalence of nitrogen‐cycling microorganisms in a full‐scale submerged attached‐growth reactor. Water Environment Research, 93(5), 787–796. https://doi.org/10.1002/wer.1471.

Diterbitkan

2023-10-22

Terbitan

Bagian

Articles