Penerapan Metode Moving Particle Semi-Implicit dalam Simulasi Pelelehan Freeze Plug pada Molten Salt Reactor saat Terjadi Kecelakaan Reaktor
DOI:
https://doi.org/10.23887/jstundiksha.v12i3.51634Keywords:
Freeze Plug, Metode MPS, Transfer PanasAbstract
Sisi keamanan merupakan aspek yang sangat diperhatikan dalam mendesain suatu reaktor. Perpindahan panas yang cepat dalam pelelehan freeze plug merupakan salah satu faktor yang sangat krusial dalam desain reaktor molten molten salt. Tujuan penelitian ini adalah menganalisis perpindahan panas pada pencairan frozen salt dalam reaktor molten salt, mengevaluasi efektivitas desain freeze plug dengan dan tanpa logam tambahan (tembaga, kuningan, dan aluminium), serta memberikan rekomendasi desain untuk meningkatkan efisiensi dan keamanan reaktor molten salt. Penelitian ini merupakan penelitian kuantitatif dimana mekanisme perpindahan panas pada pencairan frozen salt disimulasikan dengan menggunakan metode Moving Particle Semi-Implicit dengan analisis 2D dengan menggunakan dua variasi desain. Desain yang disimulasikan adalah freeze plug dengan dan tanpa tambahan logam. Subjek penelitian utama dalam simulasi ini adalah freeze plug dalam reaktor molten salt. Simulasi tanpa tambahan logam dilakukan selama 250 detik. Pada desain dengan tambahan logam, digunakan tiga jenis logam, yaitu tembaga, kuningan, dan aluminium. Simulasi dengan tambahan logam dilakukan selama 25 detik. Hasil yang diperoleh menunjukkan bahwa desain dengan logam tambahan menghantarkan panas lebih baik daripada tanpa logam tambahan. Dari tiga logam tersebut, tembaga memiliki waktu paling cepat dalam mencairkan frozen salt. Hal ini menunjukkan bahwa semakin tinggi nilai konduktivitas termal suatu bahan, semakin cepat perpindahan panas ke freeze plug sehingga semakin cepat pelelehan freeze plug.
References
Adyana, N. (2024). Penerapan Pajak Karbon di Indonesia: Kajian Ekonomi, Politik, Dan Sosial. OPTIMAL Jurnal Ekonomi Dan Manajemen, 4(1), 11–21. https://doi.org/10.55606/optimal.v4i1.2552.
Allibert, M., Aufiero, M., Brovchenko, M., Delpech, S., Ghetta, V., Heuer, D., Laureau, A., & Merle-Lucotte, E. (2016). Molten salt fast reactors. In Handbook of Generation IV Nuclear Reactors. https://doi.org/10.1016/B978-0-08-100149-3.00007-0.
Apriliyanti, K., & Rizki, D. (2023). Kebijakan energi terbarukan: studi kasus indonesia dan norwegia dalam pengelolaan sumber energi berkelanjutan. Jurnal Ilmu Pemerintahan Widya Praja, 49(2), 186–209. https://doi.org/10.33701/jipwp.v49i2.3684.
Bhowmik, C., Baruah, A., Bhowmik, S., & Ray, A. (2018). Green energy sources selection for sustainable energy planning using multi-criteria decision-making approach. IOP Conference Series: Materials Science and Engineering, 377(1). https://doi.org/10.1088/1757-899X/377/1/012029.
Chisholm, B. M., Krahn, S. L., & Sowder, A. G. (2020). A unique molten salt reactor feature – The freeze valve system: Design, operating experience, and reliability. Nuclear Engineering and Design, 368(1), 110803.
Haubenreich, P. N., & Engel, J. R. (2014). The molten salt reactor (MSR) in generation IV: Overview and perspectives. Nuclear Applications and Technology, 8(2), 118–136. https://doi.org/10.1016/j.pnucene.2014.02.014.
Hidayati, A. N., Mustari, A. P. A., Waris, A., Yulianto, Y., & Ilham, M. (2021). Study on Fluid Descends Vertically on Static Fluid Using Moving Particle Semi-Implicit Method. Journal of Physics: Conference Series, 1772(1), 012007. https://doi.org/10.1088/1742-6596/1772/1/012007.
Hidayati, A. N., Waris, A., Mustari, A. P. A., Apriani, N. A., Ifthacharo, M., & Wulandari, R. (2020). The Effect of Temperature Variations on Wood’s Metal Plate Melting Simulation by Using MPS. Journal of Physics: Conference Series, 1493(1), 012024. https://doi.org/10.1088/1742-6596/1493/1/012024.
Ilham, M., Aji, I. K., & Okawa, T. (2023). Numerical investigation on the effects of fundamental design parameters on freeze plug performance in molten salt reactors. Nuclear Engineering and Design, 403, 112144. https://doi.org/10.1016/j.nucengdes.2022.112144.
Ilham, M., Yulianto, Y., & Mustari, A. P. A. (2018). Simulation on Relocation of Non-Compressed Fluid Flow using Moving Particle Semi-Implicit (MPS) Method. IOP Conference Series: Materials Science and Engineering, 407(1), 012100. https://doi.org/10.1088/1757-899X/407/1/012100.
Istavara, A., Ratiko, R., Pratama, H. A., & Nasruddin, N. (2022). Pemodelan Dinamik Pendinginan Bahan Bakar Nuklir Bekas Reaktor Riset Secara Natural Konveksi Pada Prototipe Dry Cask Storage. Urania: Jurnal Ilmiah Daur Bahan Bakar Nuklir, 28(2), 113–124. https://doi.org/10.17146/urania.2022.28.2.6639.
Koshizuka, S., Shibata, K., Kondo, M., & Matsunaga, T. (2018). Moving particle semi-implicit method. In A Meshfree Particle Method for Fluid Dynamics. Academic Press. https://doi.org/10.1016/C2016-0-03952-9.
Li, G., Gao, J., Wen, P., Zhao, Q., Wang, J., Yan, J., & Yamaji, A. (2020). A review on MPS method developments and applications in nuclear engineering. Nuclear Engineering. Computer Methods in Applied Mechanics and Engineering, 367, 113166. https://doi.org/10.1016/j.cma.2020.113166.
Li, G., Oka, Y., & Furuya, M. (2014). Experimental and numerical study of stratification and solidification/melting behaviors. Nuclear Engineering and Design, 272, 109–117. https://doi.org/10.1016/j.nucengdes.2014.02.023.
Limbaran, B. G., Harto, A. W., & Sihana, S. (2021). Analisis Sistem Pendingin Pasif Pasca Shutdown Dengan Skenario Severe Accident pada Innovative Molten Salt Reactor (IMSR). Teknofisika, 24(1), 29–34. https://doi.org/10.17146/gnd.2021.24.1.5957.
Lumbanraja, S. M., & Dewi, D. (2017). Kajian Pra Kelayakan PLTN SMART Lepas Pantai Jenis Struktur Berbasis Gravitasi Untuk Indonesia. Jurnal Pengembangan Energi Nuklir, 19(1), 33. https://doi.org/10.17146/jpen.2017.19.1.3267.
Lumbanraja, S. M., & Liun, E. (2018). Reviu Implementasi Thorcon Molten Salt Reactor di Indonesia. Jurnal Pengembangan Energi Nuklir, 20(1), 53. https://doi.org/10.17146/jpen.2018.20.1.4083.
Mahmuddin, F., & Kashiwagi, M. (2014). Performance Evaluation of an Optimized Floating Breakwater in Oblique Waves with a Higher-Order Boundary Element Method. Makara Journal of Technology, 18(1), 7. https://doi.org/10.7454/mst.v18i1.2940.
Mangapul, J. (2016). PengaturanTeganganPembangkitListrikTenagaSurya(PLTS) 1000 WATT. Jurnal Kajian Teknik Elektro, 1(1), 79–95. https://doi.org/10.52447/jkte.v1i1.211.
Mariana, K. (2023). Peranan etika bisnis dalam menghadapi global warming di era globalisasi. Jurnal Ilmiah Multidisiplin, 2(01), 30–35. https://doi.org/10.56127/jukim.v2i01.416.
Meiliasari, D. P., Panjaitan, B. S., Widana, I. D. K. K., Apriadi, R. K., & Cahyadi, D. (2022). Lesson Learned Dari Kecelakaan Reaktor Nuklir Fukushima Daiichi Untuk Meningkatkan Mitigasi Reaktor Serba Guna Gerrit Augustinus Siwabessy (RSG-GAS). PENDIPA Journal of Science Education, 6(2), 493–500. https://doi.org/10.33369/pendipa.6.2.493-500.
Mustari, A. P. A., & Oka, Y. (2014). Molten uranium eutectic interaction on iron-alloy by MPS method. Nuclear Engineering and Design, 278, 387–394. https://doi.org/10.1016/j.nucengdes.2014.07.028.
Mustari, A. P. A., Oka, Y., Furuya, M., Takeo, W., & Chen, R. (2015). 3D simulation of eutectic interaction of Pb–Sn system using Moving Particle Semi-implicit (MPS) method. Annals of Nuclear Energy, 81, 26–33. https://doi.org/10.1016/j.anucene.2015.03.031.
Nabiilah, B. F., Mustarib, A. P. A., & Yulianto, Y. (2022). Simulasi Pelelehan Freeze Plug Termodifikasi pada Molten Salt Reactor Menggunakan Metode Moving Particle Semi-implicit. POSITRON, 12(2), 112–119. https://doi.org/10.26418/positron.v12i2.57434.
Sampera, H. (2016). Aplikasi Metode Beda Hingga Crank-Nicholson Implisit untuk Menentukan Kasus Adveksi-Difusi 2D pada Sebaran Polutan Di Suatu Perairan. PRISMA FISIKA, 4(2), 56–63. https://doi.org/10.26418/pf.v4i2.15851.
Sinopa, L. C. K., Noviani, E., & Rizki, S. W. (2020). Hampiran Solusi Persamaan Panas Dimensi Satu Dengan Metode Beda Hingga Crank-Nicolson. Bimaster: Buletin Ilmiah Matematika, Statistika Dan Terapannya, 9(1), 195 – 204. https://doi.org/10.26418/bbimst.v9i1.38819.
Takebayashi, Y., Lyamzina, Y., Suzuki, Y., & Murakami, M. (2017). Risk Perception and Anxiety Regarding Radiation after the 2011 Fukushima Nuclear Power Plant Accident: A Systematic Qualitative Review. International Journal of Environmental Research and Public Health, 14(11), 1306. https://doi.org/10.3390/ijerph14111306.
Tiberga, M., Shafer, D., Lathouwers, D., Rohde, M., & Kloosterman, J. L. (2019). Preliminary investigation on the melting behavior of a freeze-valve for the Molten Salt Fast Reactor. Annals of Nuclear Energy, 132, 544–554. https://doi.org/10.1016/j.anucene.2019.06.039.
Wang, Q., Li, R., & He, G. (2018). Research status of nuclear power: A review. Renewable and Sustainable Energy Reviews, 90, 90–96. https://doi.org/10.1016/j.rser.2018.03.044.
Yanti, N. J., Mustari, A. P. A., Hidayati, A. N., & Aprianti, N. A. (2022). The effect of Copper utilization on MSFR’s safety plug performance simulation by using MPS. Journal of Physics: Conference Series, 2243(1), 012059. https://doi.org/10.1088/1742-6596/2243/1/012059 DownloadArticle PDF.
Yoschenko, V., Kashparov, V., & Ohkubo, T. (n.d.). Radioactive Contamination in Forest by the Accident of Fukushima Daiichi Nuclear Power Plant: Comparison with Chernobyl. Radiocesium Dynamics in a Japanese Forest Ecosystem: Initial Stage of Contamination After the Incident at Fukushima Daiichi Nuclear Power Plant, 1(1), 3–22. https://doi.org/10.1007/978-981-13-8606-0_1.
Yusibani, E., Nisa, H., & Rajibussalim, R. (2021). Simulasi Pengaruh Radius Channel Garam dan Temperatur Terhadap Distribusi Temperatur Pada Teras Molten Salt Breeder Reactor. Jurnal Pengembangan Energi Nuklir, 23(2), 81–88. https://doi.org/10.17146/jpen.2021.23.2.6407.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Wafiq Azizah Nurhajjah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)