Komparasi Algoritme K-NN, Naïve Bayes, dan Cart untuk Memprediksi Penerima Beasiswa

Authors

  • Ali Nur Ikhsan Universitas Amikom Purwokerto, Purwokerto, Indonesia
  • Pungkas Subarkah Universitas Amikom Purwokerto, Purwokerto, Indonesia
  • Raditya Sani Alifian Universitas Amikom Purwokerto, Purwokerto, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i2.51745

Keywords:

Beasiswa, Algoritme, K-NN, Naïve Bayes, CART

Abstract

Persebaran penerima beasiswa di tanah air Indonesia terdapat masalah salah satunya yaitu tidak tepat sasaran. Pemerintah Indonesia memberikan beasiswa kepada peserta didik di Indonesia sebagai contoh yaitu Program Indonesaia Pintar dan, Program Indonesia Pintar Pendidikan Dasar dan Pendidikan menengah. Pemberian beasiswa diperlukan adanya klasifikasi dalam mengambil keputusan penerima beasiswa tersebut untuk meminimalisir salah sasaran. Prediksi secara dini harus dilakukan untuk mengantisipasi kesalahan dalam penerima bantuan beasiswa, salah satunya menggunakan teknik data mining. Tujuan penelitian ini untuk menganalisis Komparasi Algoritme K-NN, Naïve Bayes, Dan CART untuk Memprediksi Penerima Beasiswa bagi pengelola di SMA. Penelitian yang dilakukan menggunakan data mining terhadap dataset penerima beasiswa dengan memanfaatkan aplikasi Weka dalam mengolah data. Dataset yang digunakan dalam penelitian ini yaitu data penerima beasiswa di salah satu SMA dengan jumlah dataset yaitu 948 data dan memiliki 6 atribut (5 atribut dan 1 target atribut). Metode yang digunakan dalam penelitian ini yaitu Confusion matrix dan K-fold 10 Cross Validation.  Komparasi Algoritme K-NN, Naïve Bayes, Dan CART untuk Memprediksi Penerima Beasiswa. Dari ketiga Algoritme yang digunakan dalam penelitian diperoleh kesimpulan Algoritme CART merupakan Algoritme dengan hasil akurasi yang paling tinggi sebesar 91.3502% untuk memprediksi penerima beasiswa dengan kategori Good Classification.

References

Alverina, D., Chrismanto, A. R., & Santosa, R. G. (2018). Perbandingan Algoritma C4.5 dan CART dalam Memprediksi Kategori Indeks Prestasi Mahasiswa. Jurnal Teknologi Dan Sistem Komputer, 6(2), 76–83. https://doi.org/10.14710/jtsiskom.6.2.2018.76-83.

Alwi, A., & Munirah. (2022). The Concept Of Naive Bayes And Its Simple Use For Prediction Final Score Of Student Examination Using R Language. Jurnal Teknik Informatika (JUTIF), 3(1), 133–140. https://doi.org/10.20884/1.jutif.2022.3.1.139.

Arianto, B. (2021). Dampak Pandemi COVID-19 terhadap Perekonomian Dunia. Jurnal Ekonomi Perjuangan, 2(2), 212–224. https://doi.org/10.36423/jumper.v2i2.665.

Bermejo-Martín, G., Rodríguez-Monroy, C., & Núñez-Guerrero, Y. M. (2021). Water consumption range prediction in Huelva’s households using classification and regression trees. Water (Switzerland), 13(4). https://doi.org/10.3390/w13040506.

Bermejo-Martín, G., Rodríguez-Monroy, C., Núñez-Guerrero, Y. M., S, S., Wang, H., Subarkah, P., Abdallah, M. M., Hidayah, S. O. N., Wazery, Y. M., Saber, E., Houssein, E. H., Ali, A. A., Amer, E., Lu, J., Qian, W., Li, S., Cui, R., Ye, H., Wu, P., … Ali, H. A. (2021). Accurate detection of Covid-19 patients based on Feature Correlated Naïve Bayes (FCNB) classification strategy. IEEE Access, 9(1), 121. https://doi.org/10.1007/s12652-020-02883-2.

Bunker, R. P., & Thabtah, F. (2019). A machine learning framework for sport result prediction. Applied Computing and Informatics, 15(1), 27–33. https://doi.org/10.1016/j.aci.2017.09.005.

Coussement, K., Phan, M., De Caigny, A., Benoit, D. F., & Raes, A. (2020). Predicting student dropout in subscription-based online learning environments: The beneficial impact of the logit leaf model. Decision Support Systems, 135(May), 113325. https://doi.org/10.1016/j.dss.2020.113325.

Darmayanti, I., Subarkah, P., Anunggilarso, L. R., & Suhaman, J. (2021). Prediksi Potensi Siswa Putus Sekolah Akibat Pandemi Covid-19 Menggunakan Algoritme K-Nearest Neighbor. Jurnal Sains Dan Teknologi, 10(2), 230–238.

Fitria, Linda., Neviyarni., Netrawati., & Karneli, Y. (2020). Cognitive Behavior Therapy Counseling Untuk Mengatasi Anxiety Dalam Masa Pandemi Covid-19. Al-Irsyad: Jurnal Pendidikan Dan Konseling, 10(1), 23–29.

Gao, L., Li, D., Yao, L., & Gao, Y. (2021). Sensor drift fault diagnosis for chiller system using deep recurrent canonical correlation analysis and k-nearest neighbor classifier. ISA Transactions, xxxx. https://doi.org/10.1016/j.isatra.2021.04.037.

García, V. J., Márquez, C. O., Isenhart, T. M., Rodríguez, M., Crespo, S. D., & Cifuentes, A. G. (2019). Evaluating the conservation state of the páramo ecosystem: An object-based image analysis and CART algorithm approach for central Ecuador. Heliyon, 5(10). https://doi.org/10.1016/j.heliyon.2019.e02701.

Gu, J., & Lu, S. (2021). An effective intrusion detection approach using SVM with naïve Bayes feature embedding. Computers and Security, 103, 102158. https://doi.org/10.1016/j.cose.2020.102158.

Han, J., Kamber, M., & Pei, J. (2012). Data Mining Concepts and Techniques 3rd Edition. Morgan Kauffman.

Helena, K., Susanti, Y., & Respatiwulan. (2019). Penerapan Metode Chi-Squared Automatic Interaction Detection (CHAID) dan Classification And Regression Trees (CART) pada Klasifikasi Status Kerja di Kabupaten Brebes. Seminar Nasional Sains Dan Enterpreneurship VI.

Idris, M. (2019). Implementasi Data Mining Dengan Algoritma Naive Bayes Untuk Memprediksi Angka Kelahiran. Jurnal Pelita Informatika, 7(3), 421–428.

Karo, I. M. K., Fajari, M. Y., Fadhilah, N. U., & Wardani, W. Y. (2022). Benchmarking Naïve Bayes and ID3 Algorithm for Prediction Student Scholarship. IOP Conference Series: Materials Science and Engineering, 1232(1), 012002. https://doi.org/10.1088/1757-899x/1232/1/012002.

Khan, A., Li, J. P., Hasan, M. K., Varish, N., Mansor, Z., Islam, S., Saeed, R. A., Alshammari, M., & Alhumyani, H. (2022). PackerRobo: Model-based robot vision self supervised learning in CART. Alexandria Engineering Journal, 61(12), 12549–12566. https://doi.org/10.1016/j.aej.2022.05.043.

Kidd, D., Miner, J., Schein, M., Blauw, M., & Allen, D. (2020). Ethics across the curriculum: Detecting and describing emergent trends in ethics education. Studies in Educational Evaluation, 67(October 2019), 100914. https://doi.org/10.1016/j.stueduc.2020.100914.

Laajaj, R., Moya, A., & Sánchez, F. (2022). Equality of opportunity and human capital accumulation: Motivational effect of a nationwide scholarship in Colombia. Journal of Development Economics, 154. https://doi.org/10.1016/j.jdeveco.2021.102754.

Lu, J., Qian, W., Li, S., & Cui, R. (2021). Enhanced k-nearest neighbor for intelligent fault diagnosis of rotating machinery. Applied Sciences (Switzerland), 11(3), 1–15. https://doi.org/10.3390/app11030919.

Mittal, P., & Gill, N. S. (2014). Comparative Analysis Of Classification Techniques On Medical Data Sets. IJRET: International Journal of Research in Engineering and Technology, 3(6), 454–460.

Mustakim, & Oktaviani F, G. (2016). Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa. 13(2), 195–202.

Nawaz, M. S., Shoaib, B., & Ashraf, M. A. (2021). Intelligent Cardiovascular Disease Prediction Empowered with Gradient Descent Optimization. Heliyon, 7(5), e06948. https://doi.org/10.1016/j.heliyon.2021.e06948.

Noviana, D., Susanti, Y., & Susanto, I. (2019). Analisis Rekomendasi Penerima Beasiswa Menggunakan Algoritma K-Nearest Neighbor (K-NN) dan Algoritma C4.5. Seminar Nasional Penelitian Pendidikan Matematika (SNP2M) 2019 UMT, 79–87.

Nurdiawan, O., Kurnia, D. A., Solihudin, D., Hartati, T., & Suprapti, T. (2021). Comparison of the K-Nearest Neighbor algorithm and the decision tree on moisture classification. IOP Conference Series: Materials Science and Engineering, 1088(1), 012031. https://doi.org/10.1088/1757-899x/1088/1/012031.

Okfalisa, Fitriani, R., & Vitriani, Y. (2018). The comparison of linear regression method and k-nearest neighbors in scholarship recipient. Proceedings - 2018 IEEE/ACIS 19th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2018, 194–199. https://doi.org/10.1109/SNPD.2018.8441068.

Pallathadka, H., Wenda, A., Ramirez-Asís, E., Asís-López, M., Flores-Albornoz, J., & Phasinam, K. (2021). Classification and prediction of student performance data using various machine learning algorithms. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.07.382.

Permana, A. P., Ainiyah, K., & Holle, K. F. H. (2021). Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up. JISKA (Jurnal Informatika Sunan Kalijaga), 6(3), 178–188. https://doi.org/10.14421/jiska.2021.6.3.178-188.

Praningki, T., & Budi, I. (2018). Sistem Prediksi Penyakit Kanker Serviks Menggunakan CART, Naive Bayes, dan k-NN. Creative Information Technology Journal, 4(2), 83. https://doi.org/10.24076/citec.2017v4i2.100.

Pujianto, A., Kusrini, K., & Sunyoto, A. (2018). Perancangan Sistem Pendukung Keputusan Untuk Prediksi Penerima Beasiswa Menggunakan Metode Neural Network Backpropagation. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(2), 157. https://doi.org/10.25126/jtiik.201852631.

Purnamawati, A., Winnarto, M. N., & Mailasari, M. (2022). Analisis Cart (Classification and Regression Trees) Untuk Prediksi Pengguna Sepeda Berdasarkan Cuaca. Jurnal Teknoinfo, 16(1), 14. https://doi.org/10.33365/jti.v16i1.1478.

Shen, Z., Yang, Y., Ai, L., Yu, C., & Su, M. (2022). A hybrid CART-GAMs model to evaluate benthic macroinvertebrate habitat suitability in the Pearl River Estuary, China. Ecological Indicators, 143(May), 109368. https://doi.org/10.1016/j.ecolind.2022.109368.

Sisodia, D., & Sisodia, D. S. (2021). Engineering Science and Technology , an International Quad division prototype selection-based k-nearest neighbor classifier for click fraud detection from highly skewed user click dataset. Engineering Science and Technology, an International Journal, xxxx. https://doi.org/10.1016/j.jestch.2021.05.015.

Straub, R., & Vilsmaier, U. (2020). Pathways to educational change revisited– controversies and advances in the German teacher education system. Teaching and Teacher Education, 96, 103140. https://doi.org/10.1016/j.tate.2020.103140.

Subarkah, P., Ikhsan, A. N., & Setyanto, A. (2018). The effect of the number of attributes on the selection of study program using classification and regression trees algorithms. Proceedings - 2018 3rd International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2018. https://doi.org/10.1109/ICITISEE.2018.8721030.

Subarkah, Pungkas, Abdallah, M. M., & Hidayah, S. O. N. (2021). Komparasi Akurasi Algoritme CART Dan Neural Network Untuk Diagnosis Penyakit Diabetes Retinopathy. CogITo Smart Journal, 7(1), 121. https://doi.org/10.31154/cogito.v7i1.304.121-134.

Sukamto, S., Adriyani, Y., & Aulia, R. (2020). Prediksi Kelompok UKT Mahasiswa Menggunakan Algoritma K-Nearest Neighbor. JUITA: Jurnal Informatika, 8(1), 121. https://doi.org/10.30595/juita.v8i1.6267.

Susanto, S., & Suryadi, D. (2010). Pengantar Data Mining – Menggali Pengetahuan dari Bongkahan Data. ANDI.

Wang, B., & Mao, Z. (2020). A dynamic ensemble outlier detection model based on an adaptive k-nearest neighbor rule. Information Fusion, 63(May), 30–40. https://doi.org/10.1016/j.inffus.2020.05.001.

Wazery, Y. M., Saber, E., Houssein, E. H., Ali, A. A., & Amer, E. (2021). An Efficient Slime Mould Algorithm Combined with K-Nearest Neighbor for Medical Classification Tasks. IEEE Access, 9, 113666–113682. https://doi.org/10.1109/ACCESS.2021.3105485.

Zerlinda, H. N., Slamet, I., & Zukhronah, E. (2019). Klasifikasi Calon Penerima Bidikmisi Dengan Menggunakan. 88–93.

Downloads

Published

2023-10-22

How to Cite

Ikhsan, A. N., Subarkah, P. ., & Alifian , R. S. . (2023). Komparasi Algoritme K-NN, Naïve Bayes, dan Cart untuk Memprediksi Penerima Beasiswa. JST (Jurnal Sains Dan Teknologi), 12(2), 309–316. https://doi.org/10.23887/jstundiksha.v12i2.51745

Issue

Section

Articles