Peningkatan Biodegradabilitas dan Penyerapan Air Akibat Penambahan Mikroselulosa Hasil Isolasi Tandan Kosong Kelapa Sawit dalam Bioplastik

Authors

  • Berlian Sitorus Universitas Tanjungpura, Pontianak, Indonesia
  • Icha Novianti Universitas Tanjungpura, Pontianak, Indonesia
  • Adhitiyawarman Universitas Tanjungpura, Pontianak, Indonesia
  • Antonius Universitas Tanjungpura, Pontianak, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i2.52469

Keywords:

Bioplastik, mikroselulosa, tandan kosong kelapa sawit, uji biodegradabilitas, uji mekanik

Abstract

Bioplastik adalah jenis bahan yang cakupannya luas, meliputi plastik berbasis bio (bio-based) tetapi tidak harus biodegradabel ataupun plastik berbahan dasar petrokimia dan bio yang dianggap bersifat biodegradable. Penggunaan bioplastik diharapkan dapat mengurangi pencemaran lingkungan yang diakibatkan sampah plastik konvensional. Namun seringkali sifat fisik dari bioplastik belum sesuai dengan yang diinginkan, sehingga perlu ditingkatkan, misalnya dalam hal kekuatan mekanik. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan mikroselulosa hasil isolasi dari tandan kosong kelapa sawit terhadap sifat bioplastik komposit dari PVA-selulosa-asam sitrat-pati-gliserol. Adapun tahapan metode yang dilakukan: preparasi serat, delignifikasi, hidrolisis asam, pembuatan film tipis bioplastik, serta karakterisasi mikroselulosa dan plastik yang dihasilkan. Mikroselulosa hasil isolasi memiliki derajat kristalinitas 39% dan diameter serat ± 8,5 μm. Bioplastik dengan lima variasi penambahan massa mikroselulosa: masing-masing diuji kekuatan mekanik, biodegradabilitas dengan metode soil burial test, dan penyerapan air. Hasil pengujian menunjukkan pengaruh penambahan mikroselulosa terhadap bioplastik, yaitu dalam hal peningkatan kekuatan tarik dari bioplastik menjadi 7 - 8 MPa dan persen elongasi 10-16%. Biodegradabilitas dan penyerapan air dari bioplastik semakin tinggi seiring dengan penambahan jumlah mikroselulosa dalam bioplastik.

References

Abdullah, A. H. D., Putri, O. D., Fikriyyah, A. K., Nissa, R. C., & Intadiana, S. (2020). Effect of microcrystalline cellulose on characteristics of cassava starch-based bioplastic. Polymer-Plastics Technology and Materials, 59(12). https://doi.org/10.1080/25740881.2020.1738465.

Abral, H., Chairani, M. K., Rizki, M. D., Mahardika, M., Handayani, D., Sugiarti, E., Muslimin, A. N., Sapuan, S. M., & Ilyas, R. A. (2021). Characterization of compressed bacterial cellulose nanopaper film after exposure to dry and humid conditions. Journal of Materials Research and Technology, 11, 896–904. https://doi.org/10.1016/j.jmrt.2021.01.057.

Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M., & Sukumaran, S. (2020). Plastic rain in protected areas of the United States. Science, 368(6496). https://doi.org/10.1126/science.aaz5819.

Ching, Y. C., & Ng, T. S. (2014). Effect of preparation conditions on cellulose from oil palm empty fruit bunch fiber. In BioResources (Vol. 9, Issue 4). https://doi.org/10.15376/biores.9.4.6373-6385.

Ciolacu, D., Ciolacu, F., & Popa, V. I. (2011). Amorphous cellulose - Structure and characterization. Cellulose Chemistry and Technology, 45(1–2).

Dawam Abdu, A. H., Pudjirahar, S., Karina, M., Dwi Putri, O., & Fauziyyah, R. H. (2018). Fabrication and Characterization of Sweet Potato Starch-based Bioplastics Plasticized with Glycerol. Journal of Biological Sciences, 19(1). https://doi.org/10.3923/jbs.2019.57.64.

Effendi, F., Elvia, R., & Amir, H. (2018). Preparasi Dan Karakterisasi Mikrokristalin Selulosa (MCC) Berbahan Baku Tandan Kosong Kelapa Sawit (TKKS). Alotrop, 2(1), 52–57. https://doi.org/10.33369/atp.v2i1.4672.

Erni Puryati, N., Ariyani, D., & Sunardi, S. (2019). Pengaruh Penambahan Carboxymethyl Cellulose Terhadap Karakteristik Bioplastik Dari Pati Ubi Nagara (Ipomoea batatas L.). Indo. J. Chem. Res., 7(1), 77–85. https://doi.org/10.30598//ijcr.2019.7-sun.

Haryati, S., Rini, A. S., & Safitri, Y. (2017). Pemanfaatan Biji Durian Sebagai Bahan Baku Plastik Biodegradable dengan Plasticizer Giserol dan Bahan Pengisi CaCO3. Jurnal Teknik Kimia, 23(1), 1–8.

Hussin, M. H., Pohan, N. A., Garba, Z. N., Kassim, M. J., Rahim, A. A., Brosse, N., Yemloul, M., Fazita, M. R. N., & Haafiz, M. K. M. (2016). Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. International Journal of Biological Macromolecules, 92. https://doi.org/10.1016/j.ijbiomac.2016.06.094.

Isroi, Cifriadi, A., Panji, T., Wibowo, N. A., & Syamsu, K. (2017). Bioplastic production from cellulose of oil palm empty fruit bunch. IOP Conference Series: Earth and Environmental Science, 65(1). https://doi.org/10.1088/1755-1315/65/1/012011.

Khaw, Y. Y., Chee, C. Y., Gan, S. N., Singh, R., Ghazali, N. N. N., & Liu, N. S. (2019). Poly(lactic acid) composite films reinforced with microcrystalline cellulose and keratin from chicken feather fiber in 1-butyl-3-methylimidazolium chloride. Journal of Applied Polymer Science, 136(24). https://doi.org/10.1002/app.47642.

Khoramnejadian, S. (2011). Converting non-biodegradable plastic to biodegradable by using natural polymer to help environment conservation. Journal of Food, Agriculture and Environment, 9(2), 477–479.

Lambert, S., & Wagner, M. (2017). Environmental performance of bio-based and biodegradable plastics: The road ahead. In Chemical Society Reviews (Vol. 46, Issue 22). https://doi.org/10.1039/c7cs00149e.

Maryam, M., Rahmad, D., & Yunizurwan, Y. (2019). Sintesis Mikro Selulosa Bakteri Sebagai Penguat (Reinforcement) Pada Komposit Bioplastik Dengan Matriks PVA (Poli Vinil Alcohol). Jurnal Kimia Dan Kemasan, 41(2), 110. https://doi.org/10.24817/jkk.v41i2.4055.

Moenawar, M. G. (2019). Seminar Nasional Sosial Ekonomi 2019. In Manajemen Inovasi Mendukung Transformasi Pembangunan Agribisnis Kerakyatan dan Penyuluhan di Era Revolusi Industri 4.0 (Issue July 2019).

Perrez, F. X. (2020). The role of the United Nations Environment Assembly in emerging issues of international environmental law. Sustainability (Switzerland), 12(14), 20–21. https://doi.org/10.3390/su12145680.

Pujiasih, S., Kurnia, Masykur, A., Kusumaningsih, T., & Saputra, O. A. (2018). Silylation and characterization of microcrystalline cellulose isolated from indonesian native oil palm empty fruit bunch. Carbohydrate Polymers, 184. https://doi.org/10.1016/j.carbpol.2017.12.060.

Purwanti, A. (2010). Analisis Kuat Tarik dan Elongasi Plastik Kitosan Terplastisasi Sorbitol. Jurnal Teknologi, 3(2).

Rahmah Harun. (2020). Sintesis Karboksimetil Selulosa (CMC) dari Selulosa Pelepah Salak (Salacca Zalacca) Sebagai Flokulan. UIN Alauddin Makassar.

Razali, N., Hossain, M. S., Taiwo, O. A., Ibrahim, M., Nadzri, N. W. M., Razak, N., Rawi, N. F. M., Mahadar, M. M., & Kassim, M. H. M. (2017). Influence of acid hydrolysis reaction time on the isolation of cellulose nanowhiskers from oil palm empty fruit bunch microcrystalline cellulose. BioResources, 12(3). https://doi.org/10.15376/biores.12.3.6773-6788.

Rivai, H., Hamdani, A. S., Ramdani, R., Lalfari, R. S., Andayani, R., Armin, F., & Djamaan, A. (2018). Production and Characterization of Alpha Cellulose Derived from Rice Straw (Oryza sativa L.). International Journal of Pharmaceutical Review and Research, 52(1), 45–48. https://doi.org/10.9734/bpi/tipr/v3/1698c.

Sun, X., Lu, C., Liu, Y., Zhang, W., & Zhang, X. (2014). Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohydrate Polymers, 101(1). https://doi.org/10.1016/j.carbpol.2013.09.088.

Xiang, L. Y., Mohammed, M. A., & Samsu Baharuddin, A. (2016). Characterisation of microcrystalline cellulose from oil palm fibres for food applications. Carbohydrate Polymers, 148. https://doi.org/10.1016/j.carbpol.2016.04.055.

Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. In Nature (Vol. 540, Issue 7633). https://doi.org/10.1038/nature21001.

Downloads

Published

2023-10-22

Issue

Section

Articles