Optimalisasi Hidrolisis Air Subkritis Biomassa Ampas Tebu Berbantuan Surfaktan untuk Produksi Gula Reduksi

Authors

DOI:

https://doi.org/10.23887/jstundiksha.v12i3.53403

Keywords:

Air Subkritis, Ampas Tebu, Gula Reduksi, Hidrolisis, Surfaktan

Abstract

Penggunaan bahan bakar fosil yang menimbulkan banyak masalah mendorong peneliti untuk mengembangkan energi terbarukan. Ampas tebu sebagai limbah pertanian yang melimpah di Indonesia berpotensi untuk dimanfaatkan dalam produksi gula reduksi yang merupakan produk antara dari biofuel. Penelitian ini bertujuan untuk menganalisis hidrolisis air subkritis ampas tebu menggunakan surfaktan Tween 80 untuk mengoptimalkan total perolehan gula reduksi. Desain penelitian yang digunakan adalah penelitian eksperimental kuantitatif. Analisa data yang digunakan yaitu analisis kuantitatif dan kualitatif. Proses air subkritis dioptimalkan dengan memvariasikan kondisi operasi suhu 130-170°C, waktu 30-60 menit, dan konsentrasi aditif 1-3%. Optimasi dilakukan dengan menggunakan Response Surface Methodology (RSM) untuk memahami perilaku faktor-faktor signifikan yang mempengaruhi konsentrasi gula reduksi. RSM ditentukan dengan menggunakan software Design-Expert V11. Hasil penelitian menunjukkan total gula reduksi tertinggi yaitu sebesar 470.6444 didapatkan pada variasi suhu 170°C, selama 30 menit, dan konsentrasi surfaktan 2%. Dari penelitian ini menunjukkan bahwa metode air subkritis dengan penambahan aditif dapat dipertimbangkan untuk produksi biofuel dari limbah ampas tebu dalam mendukung pengembangan energi terbarukan.

References

Abaide, E. R., Mortari, S. R., Ugalde, G., Valério, A., Amorim, S. M., Di Luccio, M., de FPM Moreira, R., Kuhn, R. C., Priamo, W. L., & Tres, M. V. (2019). Subcritical water hydrolysis of rice straw in a semi-continuous mode. Journal of Cleaner Production, 209, 386–397. https://doi.org/10.1016/j.jclepro.2018.10.259.

Abaide, E. R., Ugalde, G., Di Luccio, M., Moreira, R. de F. P. M., Tres, M. V, Zabot, G. L., & Mazutti, M. A. (2019). Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode. Bioresource Technology, 272, 510–520. https://doi.org/10.1016/j.biortech.2018.10.075.

Abdelwahab, N. A., Shukry, N., & El-kalyoubi, S. F. (2021). Separation of emulsified oil from wastewater using polystyrene and surfactant modified sugarcane bagasse wastes blend. Clean Technologies and Environmental Policy, 23(1), 235–249. https://doi.org/10.1007/s10098-020-01973-1.

Ampese, L. C., Buller, L. S., Myers, J., Timko, M. T., Martins, G., & Forster-Carneiro, T. (2021). Valorization of Macaúba husks from biodiesel production using subcritical water hydrolysis pretreatment followed by anaerobic digestion. Journal of Environmental Chemical Engineering, 9(4). https://doi.org/10.1016/j.jece.2021.105656.

Angelo, C., Setiawan, A. P., & Poilot, J. F. (2019). Penelitian Ampas Tebu Sebagai Material Pembuatan Papan Unting. Jurnal Intra, 7(2), 511–514.

Batista, G., Souza, R. B. A., Pratto, B., dos Santos-Rocha, M. S. R., & Cruz, A. J. G. (2019). Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresource Technology, 275, 321–327. https://doi.org/10.1016/j.biortech.2018.12.073.

Belhaj, A. F., Elraies, K. A., Mahmood, S. M., Zulkifli, N. N., Akbari, S., & Hussien, O. S. (2020). The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology, 10(1), 125–137. https://doi.org/10.1007/s13202-019-0685-y.

Chang, K. L., Chen, X. M., Wang, X. Q., Han, Y. J., Potprommanee, L., Liu, J. yong, Liao, Y. L., Ning, X. an, Sun, S. yu, & Huang, Q. (2017). Impact of surfactant type for ionic liquid pretreatment on enhancing delignification of rice straw. Bioresource Technology, 227, 388–392. https://doi.org/10.1016/j.biortech.2016.11.085.

Cocero, M. J., Cabeza, Á., Abad, N., Adamovic, T., Vaquerizo, L., Martínez, C. M., & Pazo-Cepeda, M. V. (2018). Understanding biomass fractionation in subcritical & supercritical water. The Journal of Supercritical Fluids, 133, 550–565. https://doi.org/10.1016/j.supflu.2017.08.012.

da Costa Nogueira, C., de Araújo Padilha, C. E., de Sá Leitão, A. L., Rocha, P. M., de Macedo, G. R., & dos Santos, E. S. (2018). Enhancing enzymatic hydrolysis of green coconut fiber—Pretreatment assisted by tween 80 and water effect on the post-washing. Industrial Crops and Products, 112, 734–740. https://doi.org/10.1016/j.indcrop.2017.12.047.

Darmayanti, R., Amini, H. W., Rizkiana, M. F., Setiawan, F. A., Palupi, B., Rahmawati, I., Susanti, A., & Fachri, B. A. (2019). Lignocellulosic material from main Indonesian plantation commodity as the feedstock for fermentable sugar in biofuel production. ARPN Journal of Engineering and Applied Sciences, 14(20), 3524–3534.

Deodhar, S., Rohilla, P., Manivannan, M., Thampi, S. P., & Basavaraj, M. G. (2020). Robust Method to Determine Critical Micelle Concentration via Spreading Oil Drops on Surfactant Solutions. Langmuir, 36(28), 8100–8110. https://doi.org/10.1021/acs.langmuir.0c00908.

Djali, M., Kayaputri, I. L., Kurniati, D., Sukarminah, E., Mudjenan, I. M. H., & Utama, G. L. (2021). Degradation of Lignocelluloses Cocoa Shell (Theobroma cacao L.) by Various Types of Mould Treatments. Journal of Food Quality, 2021, 6127029. https://doi.org/10.1155/2021/6127029.

Fawzy, S., Osman, A. I., Doran, J., & Rooney, D. W. (2020). Strategies for mitigation of climate change: a review. Environmental Chemistry Letters, 18(6), 2069–2094. https://doi.org/10.1007/s10311-020-01059-w.

Forsberg, C. W., Dale, B. E., Jones, D. S., Hossain, T., Morais, A. R. C., & Wendt, L. M. (2021). Replacing liquid fossil fuels and hydrocarbon chemical feedstocks with liquid biofuels from large-scale nuclear biorefineries. Applied Energy, 298, 117225. https://doi.org/10.1016/j.apenergy.2021.117225.

Jantanaprasartporn, A., Tongcumpou, C., & Tuntiwiwattanapun, N. (2021). Influence of Quartz, Kaolin, and Organic Matter on the Critical Micelle Concentration of Tween Surfactants and their Application in Diesel-Contaminated Soil Washing. Journal of Surfactants and Detergents, 24(1), 75–83. https://doi.org/10.1002/jsde.12466.

Kamalini, A., Muthusamy, S., Ramapriya, R., Muthusamy, B., & Pugazhendhi, A. (2018). Optimization of sugar recovery efficiency using microwave assisted alkaline pretreatment of cassava stem using response surface methodology and its structural characterization. Journal of Molecular Liquids, 254, 55–63. https://doi.org/10.1016/j.molliq.2018.01.091.

Kassaye, S., Pant, K. K., & Jain, S. (2017). Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreament steps. Renewable Energy, 104, 177–184. https://doi.org/10.1016/j.renene.2016.12.033.

Lachos-Perez, D., Tompsett, G. A., Guerra, P., Timko, M. T., Rostagno, M. A., Martínez, J., & Forster-Carneiro, T. (2017). Sugars and char formation on subcritical water hydrolysis of sugarcane straw. Bioresource Technology, 243, 1069–1077. https://doi.org/10.1016/j.biortech.2017.07.080.

Londono-Pulgarin, D., Cardona-Montoya, G., Restrepo, J. C., & Munoz-Leiva, F. (2021). Fossil or bioenergy? Global fuel market trends. Renewable and Sustainable Energy Reviews, 143, 110905. https://doi.org/10.1016/j.rser.2021.110905.

Magalhães Jr., A. I., de Carvalho, J. C., de Melo Pereira, G. V., Karp, S. G., Câmara, M. C., Medina, J. D. C., & Soccol, C. R. (2019). Lignocellulosic biomass from agro-industrial residues in South America: current developments and perspectives. Biofuels, Bioproducts and Biorefining, 13(6), 1505–1519. https://doi.org/10.1002/bbb.2048.

Maktum, M., Junianti, F., Nurtono, T., & Widjaja, A. (2017). Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk. AIP Conference Proceedings, 1840(1), 30004. https://doi.org/10.1063/1.4982264.

Manzanares, P. (2020). The role of biorefinering research in the development of a modern bioeconomy. Acta Innovations, 37, 47–56. https://doi.org/10.32933/ActaInnovations.37.4.

Maravić, N., Šereš, Z., Vidović, S., Mišan, A., Milovanović, I., Radosavljević, R., & Pavlić, B. (2018). Subcritical water hydrolysis of sugar beet pulp towards production of monosaccharide fraction. Industrial Crops and Products, 115, 32–39. https://doi.org/10.1016/j.indcrop.2018.02.014.

Mayanga-Torres, P. C., Lachos-Perez, D., Rezende, C. A., Prado, J. M., Ma, Z., Tompsett, G. T., Timko, M. T., & Forster-Carneiro, T. (2017). Valorization of coffee industry residues by subcritical water hydrolysis: recovery of sugars and phenolic compounds. The Journal of Supercritical Fluids, 120, 75–85. https://doi.org/10.1016/j.supflu.2016.10.015.

Muharja, M., Junianti, F., Nurtono, T., & Widjaja, A. (2017). Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk. AIP Conference Proceedings, 1840. https://doi.org/10.1063/1.4982264.

Muharja, Maktum, Darmayanti, R. F., Widjaja, A., Manurung, Y. H., Alamsyah, I., & Fadilah, S. N. (2022). Optimization of Sugarcane Bagasse Ash Utilization for Concrete Bricks Production Using Plackett-Burman and Central Composite Design. Jurnal Teknik Kimia Dan Lingkungan, 6(1), 62. https://doi.org/10.33795/jtkl.v6i1.282.

Muharja, Maktum, Fadhilah, N., Darmayanti, R. F., Sangian, H. F., Nurtono, T., & Widjaja, A. (2020). Effect of severity factor on the subcritical water and enzymatic hydrolysis of coconut husk for reducing sugar production. Bulletin of Chemical Reaction Engineering & Catalysis, 15(3), 786–797. https://doi.org/10.9767/BCREC.15.3.8870.786-797.

Muharja, Maktum, Fadhilah, N., Nurtono, T., & Widjaja, A. (2020). Enhancing enzymatic digestibility of coconut husk using nitrogen assisted-subcritical water for sugar production. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 84–95. https://doi.org/10.9767/bcrec.15.1.5337.84-95.

Muharja, Maktum, Junianti, F., Ranggina, D., Nurtono, T., & Widjaja, A. (2018). An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk. Bioresource Technology, 249(July 2017), 268–275. https://doi.org/10.1016/j.biortech.2017.10.024.

Muharja, Maktum, Umam, D. K., Pertiwi, D., Zuhdan, J., Nurtono, T., & Widjaja, A. (2019). Enhancement of sugar production from coconut husk based on the impact of the combination of surfactant-assisted subcritical water and enzymatic hydrolysis. Bioresource Technology, 274, 89–96. https://doi.org/10.1016/j.biortech.2018.11.074.

Nanda, S., & Berruti, F. (2021). Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters, 19(2), 1433–1456. https://doi.org/10.1007/s10311-020-01100-y.

Nargotra, P., Sharma, V., & Bajaj, B. K. (2019). Consolidated bioprocessing of surfactant-assisted ionic liquid-pretreated Parthenium hysterophorus L. biomass for bioethanol production. Bioresource Technology, 289, 121611. https://doi.org/10.1016/j.biortech.2019.121611.

Negin, C., Ali, S., & Xie, Q. (2017). Most common surfactants employed in chemical enhanced oil recovery. Petroleum, 3(2), 197–211. https://doi.org/10.1016/j.petlm.2016.11.007.

Nugroho, G., Fuchoiroh, I., -, M., Subiyanti, H., & Wardhani, R. (2021). Analisa Ampas Tebu sebagai Bahan Bakar Boiler pada Produksi Gula Tahun 2018 di PG Krebet Baru II Malang. Jurnal Nasional Aplikasi Mekatronika, Otomasi Dan Robot Industri (AMORI), 2(1). https://doi.org/10.12962/j27213560.v2i1.9131.

Okolie, J. A., Mukherjee, A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Next-generation biofuels and platform biochemicals from lignocellulosic biomass. International Journal of Energy Research, 45(10), 14145–14169. https://doi.org/10.1002/er.6697.

Oliveira, T. C. G., Hanlon, K. E., Interlandi, M. A., Torres-Mayanga, P. C., Silvello, M. A. C., Lachos-Perez, D., Timko, M. T., Rostagno, M. A., Goldbeck, R., & Forster-Carneiro, T. (2020). Subcritical water hydrolysis pretreatment of sugarcane bagasse to produce second generation ethanol. The Journal of Supercritical Fluids, 164, 104916. https://doi.org/10.1016/j.supflu.2020.104916.

Rachmah, A. N. L., Fatmawati, A., & Widjaja, A. (2022). Impact of surfactant-aided subcritical water pretreatment process conditions on the reducing sugar production from oil palm empty fruit bunch. IOP Conference Series: Earth and Environmental Science, 963(1). https://doi.org/10.1088/1755-1315/963/1/012005.

Rahardjo, A. H., Azmi, R. M., Muharja, M., Aparamarta, H. W., & Widjaja, A. (2021). Pretreatment of Tropical Lignocellulosic Biomass for Industrial Biofuel Production : A Review Pretreatment of Tropical Lignocellulosic Biomass for Industrial Biofuel Production : A Review. IOP Conf. Series: Materials Science and Engineering, 1053(2021), 012097. https://doi.org/10.1088/1757-899X/1053/1/012097.

Rao, J. S., & Kumar, B. (2012). 3D Blade root shape optimization. 10th International Conference on Vibrations in Rotating Machinery, 173–188.

Sarker, T. R., Pattnaik, F., Nanda, S., Dalai, A. K., Meda, V., & Naik, S. (2021). Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere, 284(March), 131372. https://doi.org/10.1016/j.chemosphere.2021.131372.

Sewsynker-Sukai, Y., Suinyuy, T. N., & Kana, E. B. G. (2018). Development of a sequential alkalic salt and dilute acid pretreatment for enhanced sugar recovery from corn cobs. Energy Conversion and Management, 160, 22–30. https://doi.org/10.1016/j.enconman.2018.01.024.

Sharma, V., Nargotra, P., & Bajaj, B. K. (2019). Ultrasound and surfactant assisted ionic liquid pretreatment of sugarcane bagasse for enhancing saccharification using enzymes from an ionic liquid tolerant Aspergillus assiutensis VS34. Bioresource Technology, 285, 121319. https://doi.org/10.1016/j.biortech.2019.121319.

Sirohi, R., Pandey, J. P., Singh, A., Sindhu, R., Lohani, U. C., Goel, R., & Kumar, A. (2020). Acid hydrolysis of damaged wheat grains: Modeling the formation of reducing sugars by a neural network approach. Industrial Crops and Products, 149, 112351. https://doi.org/10.1016/j.indcrop.2020.112351.

Snehya, A. V, Sundaramahalingam, M. A., Rajeshbanu, J., Anandan, S., & Sivashanmugam, P. (2021). Studies on evaluation of surfactant coupled sonication pretreatment on Ulva fasciata (marine macroalgae) for enhanced biohydrogen production. Ultrasonics Sonochemistry, 81, 105853. https://doi.org/10.1016/j.ultsonch.2021.105853.

Sudarto, R., Lukmana, L., Sari, S. F., Silitonga, E. M., Asmeni, F., Aryani, D., & Daniati, C. (2020). Pembangunan Perkebunan 2020 (D. Gartina, Iswanto, M. U. Ametung, A. Hartono, G. Widayanto, & K. A. Sukanadi (eds.)). Direktorat Jendral Perkebunan.

Syahfitri, D., Nurhadi, E., & Amir, I. T. (2022). Bisnis Model Kanvas Pada PT. Pabrik Gula Candi Baru Sidoarjo Jawa Timur. Jurnal Agribisnis Indonesia, 10(1), 63–75. https://doi.org/10.29244/jai.2022.10.1.63-75.

Vedovatto, F., Ugalde, G., Bonatto, C., Bazoti, S. F., Treichel, H., Mazutti, M. A., Zabot, G. L., & Tres, M. V. (2021). Subcritical water hydrolysis of soybean residues for obtaining fermentable sugars. The Journal of Supercritical Fluids, 167, 105043. https://doi.org/10.1016/j.supflu.2020.105043.

Weerasai, K., Champreda, V., Sakdaronnarong, C., Shotipruk, A., & Laosiripojana, N. (2018). Hydrolysis of eucalyptus wood chips under hot compressed water in the presence of sulfonated carbon-based catalysts. Food and Bioproducts Processing, 136–144. https://doi.org/10.1016/j.fbp.2018.05.005.

Yang, H., Shi, Z., Xu, G., Qin, Y., Deng, J., & Yang, J. (2018). Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresource Technology, 1–27. https://doi.org/10.1016/j.biortech.2018.11.088.

Yu, X.-L., & He, Y. (2017). Application of Box-Behnken designs in parameters optimization of differential pulse anodic stripping voltammetry for lead(II) determination in two electrolytes. Scientific Reports, 7(1), 2789. https://doi.org/10.1038/s41598-017-03030-2.

Zhang, H., Chen, W., Han, X., Zeng, Y., Zhang, J., Gao, Z., & Xie, J. (2021). Intensification of sugar production by using Tween 80 to enhance metal-salt catalyzed pretreatment and enzymatic hydrolysis of sugarcane bagasse. Bioresource Technology, 339, 125522. https://doi.org/10.1016/j.biortech.2021.125522.

Zhang, H., Huang, S., Wei, W., Zhang, J., & Xie, J. (2019). Investigation of alkaline hydrogen peroxide pretreatment and Tween 80 to enhance enzymatic hydrolysis of sugarcane bagasse. Biotechnology for Biofuels, 12(1), 1–9. https://doi.org/10.1186/s13068-019-1454-3.

Zheng, T., Jiang, J., & Yao, J. (2021). Surfactant-promoted hydrolysis of lignocellulose for ethanol production. Fuel Processing Technology, 213, 106660. https://doi.org/10.1016/j.fuproc.2020.106660.

Downloads

Published

2024-01-22

How to Cite

Muharja, M., Widjaja, A., Fadhilah, N., Darmayanti, R. F., & Fadilah, S. N. (2024). Optimalisasi Hidrolisis Air Subkritis Biomassa Ampas Tebu Berbantuan Surfaktan untuk Produksi Gula Reduksi. JST (Jurnal Sains Dan Teknologi), 12(3), 769–778. https://doi.org/10.23887/jstundiksha.v12i3.53403

Issue

Section

Articles