Model Artificial Neural Networks (ANN) untuk Prediksi COVID-19 di Indonesia

Authors

  • Alfi Bella Kurniati Universitas Jenderal Soedirman, Purwokerto, Indonesia
  • Wuryatmo A. Sidik Universitas Jenderal Soedirman, Purwokerto, Indonesia
  • Jajang Universitas Jenderal Soedirman, Purwokerto, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i3.53437

Keywords:

ANN (artificial neural network), Backpropagation, Covid-19, Particle Swarm Optimization

Abstract

Peningkatan jumlah kasus Covid-19 hampir terjadi di seluruh dunia penting dikaji karena pola persebarannya yang masif. Metode analisis yang digunakan adalah ANN.  Penelitian ini mencakup dua hal, yaitu model ANN algoritma Backpropagation Neural Network (BPNN) dan kombinasi algoritma Backpropagation Neural Network dan Particle Swarm Optimization (BPNN-PSO). Masing-masing model ANN algoritma BPNN dan BPNN-PSO dilakukan 18 kali pengujian. Hasil pengujian menunjukkan kombinasi parameter terbaik ANN dengan algoritma BPNN diperoleh MAPE sebesar 16.29% dengan arsitektur 14-5-1 dengan learning rate 0.3.  Kombinasi parameter ANN terbaik algoritma BPNN-PSO MAPE sebesar 15.45% pada arsitektur 14-10-1 dengan learning rate 0,2. Berdasarkan algoritma BPNN dan BPNN-PSO, model ANN terbaik adalah model ANN dengan algoritma BPNN-PSO.  Dengan kata lain, nilai MAPE yang cenderung lebih besar dibandingkan MAPE dari hasil algoritma BPNN-PSO.  Hal ini mengindikasikan bahwa kombinasi BPNN-PSO berhasil untuk meningkatkan akurasi hasil prediksi. Implementasi algoritma Particle Swarm Optimization (PSO) yang berperan sebagai penentu nilai bobot dan bias awal dalam proses pelatihan metode Backpropagation Neural Network (BPNN) dapat meningkatkan performa model ANN untuk memprediksi jumlah kumulatif kasus positif Covid-19 di Indonesia, dengan peningkatan akurasi yang signifikan. Sehingga penggunaan model ANN dengan algoritma BPNN-PSO dapat diterapkan dalam situasi ini untuk memprediksi jumlah kumulatif kasus positif Covid-19 di Indonesia.

References

Ahmad, I., & Asad, S. M. (2020). Predictions of coronavirus COVID-19 distinct cases in Pakistan through an artificial neural network. Epidemiology & Infection, 148. https://doi.org/10.1017/S0950268820002174.

Amalia, L., Irwan, I., & Hiola, F. (2020). Analisis gejala klinis dan peningkatan kekebalan tubuh untuk mencegah penyakit covid 19. Journal of Health Sciences and Research, 2(2). https://doi.org/10.35971/jjhsr.v2i2.6134.

Ardabili, S., Mosavi, A., Band, S. S., & Varkonyi-Koczy, A. R. (2020). Coronavirus disease (COVID-19) global prediction using hybrid artificial intelligence method of ANN trained with Grey Wolf optimizer. IEEE 3rd International Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE), 251–254.

Arianto, F. S. D., & Noviyanti, P. (2020). Prediksi kasus COVID-19 di Indonesia menggunakan metode backpropagation dan fuzzy Tsukamoto. (JurTI) Jurnal Teknologi Informasi, 4(1), 120–127. https://doi.org/10.36294/jurti.v4i1.1265.

Cahyaningsih, A. (2020). Model Prediksi Jumlah Kumulatif Kasus COVID-19 di Indonesia Menggunakan Deep Learning. Journal of Informatics Information System Software Engineering and Applications (INISTA), 3(1), 76–83. https://doi.org/10.20895/inista.v3i1.177.

Cai, G.-W., Fang, Z., & Chen, Y.-F. (2019). Estimating the number of hidden nodes of the single-hidden-layer feedforward neural networks. 15th International Conference on Computational Intelligence and Security (CIS), 172–176. https://doi.org/10.1109/CIS.2019.00044.

Cynthia, E. P., & Ismanto, E. (2017). Jaringan syaraf tiruan algoritma backpropagation dalam memprediksi ketersediaan komoditi pangan provinsi riau. Rabit: Jurnal Teknologi Dan Sistem Informasi Univrab, 2(2), 83–98. https://doi.org/10.36341/rabit.v2i2.152.

Dwiyanto, F. A., Pakpahan, H. S., Islamiyah, I., & Setyadi, H. J. (2019). Pengenalan Karakter Tulisan Menggunakan Metode Backpropagation Neural Network. Sains, Aplikasi, Komputasi Dan Teknologi Informasi, 1(2), 14–22. https://doi.org/10.30872/jsakti.v1i2.2601.

Fernandes, N., Costa, D., Costa, D., Keating, J., & Arantes, J. (2021). Predicting COVID-19 vaccination intention: The determinants of vaccine hesitancy. Vaccines, 9(10), 1161. https://doi.org/10.3390/vaccines9101161.

Ghanim, M. S., Muley, D., & Kharbeche, M. (2022). ANN-Based traffic volume prediction models in response to COVID-19 imposed measures. Sustainable Cities and Society, 8(1), 103830. https://doi.org/10.1016/j.scs.2022.103830.

Grzenda, M., Kaźmierczak, S., Luckner, M., Borowik, G., & Mańdziuk, J. (2023). Evaluation of machine learning methods for impostor detection in web applications. Expert Systems with Applications, 231, 120736. https://doi.org/10.1016/j.eswa.2023.120736.

Guo, X., Ji, M., Zhao, Z., Wen, D., & Zhang, W. (2020). Global path planning and multi-objective path control for unmanned surface vehicle based on modified particle swarm optimization (PSO) algorithm. Ocean Engineering, 21(6), 107693. https://doi.org/10.1016/j.oceaneng.2020.107693.

Hamadneh, N. N., Khan, W. A., Ashraf, W., Atawneh, S. H., Khan, I., & Hamadneh, B. N. (2021). Artificial neural networks for prediction of covid-19 in Saudi Arabia. Computers, Materials, & Continua, 2787–2796. https://doi.org/10.32604/cmc.2021.013228.

Huang, D., & Wu, Z. (2017). Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization. PLOS ONE, 12(2), e0172539. https://doi.org/10.1371/journal.pone.0172539.

Jena, P. R., Majhi, R., Kalli, R., Managi, S., & Majhi, B. (2021). Impact of COVID-19 on GDP of major economies: Application of the artificial neural network forecaster. Economic Analysis and Policy, 69, 324–339. https://doi.org/10.1016/j.eap.2020.12.013.

Kusmaryanto, S. (2014). Jaringan Saraf Tiruan Backpropagation untuk Pengenalan Wajah Metode Ekstraksi Fitur Berbasis Histogram. Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems), 8(2), 193–198. https://doi.org/10.21776/jeeccis.v8i2.283.

Li, J., Luo, H., Deng, G., Chang, J., Qiu, X., Liu, C., & Qin, B. (2021). Multidimensional Evaluation of All-Cause Mortality Risk and Survival Analysis for Hospitalized Patients with COVID-19. International Journal of Medical Sciences, 18(14), 3140. https://doi.org/10.7150%2Fijms.58889.

Liu, L. (2021). Research on Digital Economy of Intelligent Emergency Risk Avoidance in Sudden Financial Disasters Based on PSO-BPNN Algorithm. Computational Intelligence and Neuroscience, 2021, 10. https://doi.org/10.1155/2021/7708422.

Marini, F., & Walczak, B. (2015). Particle swarm optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153–165. https://doi.org/10.1016/j.chemolab.2015.08.020.

Meimela, A., Lestari, S. S. S., Mahdy, I. F., Toharudin, T., & Ruchjana, B. N. (2021). Modeling of covid-19 in Indonesia using vector autoregressive integrated moving average. Journal of Physics: Conference Series, 1722(1), 012079. https://doi.org/10.1088/1742-6596/1722/1/012079.

Meutia, S. M. S., & Himayani, R. (2021). Central and Peripheral Nervous System. Medical Profession Journal of Lampung, 11(3), 306–311. https://doi.org/10.53089/medula.v11i3.189.

Mohamad, E. T., Faradonbeh, R. S., Armaghani, D. J., Monjezi, M., & Majid, M. Z. A. (2017). An optimized ANN model based on genetic algorithm for predicting ripping production. Neural Computing and Applications, 28(1), 393–406. https://doi.org/10.1007/s00521-016-2359-8.

Mollalo, A., Rivera, K. M., & Vahedi, B. (2020). Artificial neural network modeling of novel coronavirus (COVID-19) incidence rates across the continental United States. International Journal of Environmental Research and Public Health, 17(12), 4204. https://doi.org/10.3390/ijerph17124204.

Ndaïrou, F., Area, I., J., N. J., & Torres, D. F. M. (2020). Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos, Solitons & Fractals, 135, 109846. https://doi.org/10.1016/j.chaos.2020.109846.

Niazkar, H. R., & Niazkar, M. (2020). Application of artificial neural networks to predict the COVID-19 outbreak. Global Health Research and Policy, 5(1), 1–11. https://doi.org/10.1186/s41256-020-00175-y.

Ojokoh, B. A., Sarumi, O. A., Salako, K. V., Gabriel, A. J., Taiwo, A. E., Johnson, O. V., Adegun, I. P., & Babalola, O. T. (2022). Modeling and predicting the spread of COVID-19. Data Science for COVID-19, 299–317. https://doi.org/10.1016/B978-0-323-90769-9.00039-6.

Pradana, D., Alghifari, M. L., Juna, M. F., & Palaguna, D. (2022). Klasifikasi Penyakit Jantung Menggunakan Metode Artificial Neural Network. Indonesian Journal of Data and Science, 3(2), 55–60. https://doi.org/10.56705/ijodas.v3i2.35.

Rahakbauw, D. L. (2014). Analisis Jaringan Saraf Tiruan Backpropagation Terhadap Peramalan Nilai Tukar Mata Uang Rupiah Dan Dolar. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 8(2), 27–32. https://doi.org/10.30598/barekengvol8iss2pp27-32.

Ridla, M. A. (2018). Particle Swarm Optimization Sebagai Penentu Nilai Bobot Pada Artificial Neural Network Berbasis Backpropagation Untuk Prediksi Tingkat Penjualan Minyak Pelumas Pertamina. Jurnal Ilmiah Informatika, 3(1), 183–192. https://doi.org/10.35316/jimi.v3i1.473.

Solikhun, S., Safii, M., & Trisno, A. (2017). Jaringan Saraf Tiruan Untuk Memprediksi Tingkat Pemahaman Sisiwa Terhadap Matapelajaran Dengan Menggunakan Algoritma Backpropagation. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 1(1), 24–36. https://doi.org/10.30645/j-sakti.v1i1.26.

Suhendra, C. D., & Wardoyo, R. (2015). Penentuan arsitektur jaringan syaraf tiruan backpropagation (bobot awal dan bias awal) menggunakan algoritma genetika. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 9(1), 77–88. https://doi.org/10.22146/ijccs.6642.

Susilo, A., Rumende, C. M., Pitoyo, C. W., Santoso, W. D., Yulianti, M., Herikurniawan, H., Sinto, R., Singh, G., Nainggolan, L., & Nelwan, E. J. (2020). Coronavirus disease 2019: Tinjauan literatur terkini. Jurnal Penyakit Dalam Indonesia, 7(1), 45–67. https://doi.org/10.7454/jpdi.v7i1.415.

Tealab, A. (2018). Time series forecasting using artificial neural networks methodologies: A systematic review. Future Computing and Informatics Journal, 3(2), 334–340. https://doi.org/10.1016/j.fcij.2018.10.003.

Thomas, A. J., Petridis, M., Walters, S. D., Gheytassi, S. M., & Morgan, R. E. (2015). On predicting the optimal number of hidden nodes. International Conference on Computational Science and Computational Intelligence (CSCI), 565–570. https://doi.org/10.1109/CSCI.2015.33.

Torrealba-Rodriguez, O., Conde-Gutiérrez, R. A., & Hernández-Javier, A. L. (2020). Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models. Chaos, Solitons & Fractals, 138, 109946. https://doi.org/10.1016/j.chaos.2020.109946.

Umair, S. M. (2010). Automation of Irrigation System Using ANN based Controller. International Journal, 02, 45–51.

Verianto, E., & Oetomo, B. S. D. (2020). Artificial Neural Network Model with PSO as a Learning Method to Predict Movement of the Rupiah Exchange Rate against the US Dollar. IJAIT (International Journal of Applied Information Technology), 4(02), 81–92. https://doi.org/10.25124/ijait.v4i02.3381.

Wang, L., Wang, Z., Qu, H., & Liu, S. (2018). Optimal Forecast Combination Based on Neural Networks for Time Series Forecasting. Applied Soft Computing, 66, 1–17. https://doi.org/10.1016/j.asoc.2018.02.004.

Yan, N., & Au, O. T.-S. (2019). Online learning behavior analysis based on machine learning. Asian Association of Open Universities Journal, 14(2), 97–106. https://doi.org/10.1108/aaouj-08-2019-0029.

Yang, X., Xu, G., Li, Q., Guo, Y., & Zhang, M. (2017). Authorship attribution of source code by using back propagation neural network based on particle swarm optimization. PloS One, 12(11), e0187204. https://doi.org/10.1371/journal.pone.0187204.

Downloads

Published

2024-01-22

How to Cite

Kurniati, A. B. ., Sidik, W. A. ., & Jajang. (2024). Model Artificial Neural Networks (ANN) untuk Prediksi COVID-19 di Indonesia. JST (Jurnal Sains Dan Teknologi), 12(3), 833–844. https://doi.org/10.23887/jstundiksha.v12i3.53437

Issue

Section

Articles