Optimasi Transformasi Gen CIDR1α-PfEMP1 pada Eschericia coli BL21(DE3) dengan Metode Heat-shock

Authors

  • Dicky Dewantoro Universitas Jember, Jember, Indonesia
  • Erma Sulistyaningsih Universitas Jember, Jember, Indonesia
  • Rosita Dewi Universitas Jember, Jember, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i1.53704

Keywords:

CIDR1α, E. coli BL21(DE3), malaria, PfEMP1, transformation

Abstract

Malaria masih menjadi masalah kesehatan dunia terutama di negara-negara berkembang. Data World Malaria Report 2020, kasus malaria di dunia tahun 2019 mencapai 229 juta kasus dengan total kematian mencapai 409.000 jiwa. Kematian tertinggi terjadi pada pasien usia balita yang mencapai 272.000 jiwa.  Angka kematian akibat malaria berat di dunia sangat tinggi sehingga perlu berbagai pendekatan penanganan termasuk vaksin malaria. Domain Cysteine-rich Interdomain Regions 1α-Plasmodium falciparum Erythrocyte Membrane Protein 1 (CIDR1α-PfEMP1) merupakan kandidat vaksin malaria karena berperan penting dalam pathogenesis malaria. Pengembangan vaksin malaria berbasis CIDR1α-PfEMP1 dilakukan melalui teknologi rekombinan DNA dimana tahapan yang sangat penting adalah transformasi. Tujuan penelitian ini untuk mengoptimasi kondisi transformasi gen CIDR1α-PfEMP1 pada Escherichia coli BL21(DE3) menggunakan metode heat shock guna mendapatkan efisiensi transformasi tertinggi. Variable yang dianalisis adalah durasi heat shock selama 30, 50, dan 70 detik dan volume plating 100 µL dan 200 µL. Hasil penelitian menunjukkan efisiensi transformasi tertinggi sebesar 1,9 x 102 CFU/µg dicapai pada kondisi heat shock selama 50 detik dan volume plating 200 µL. Ini adalah kondisi optimum transfomasi gen CIDR1α-PfEMP1 yang dapat digunakan untuk penelitian lanjutan guna mengembangkan vaksin malaria.

References

Bull, P. C., & Abdi, A. I. (2016). The role of PfEMP1 as targets of naturally acquired immunity to childhood malaria: Prospects for a vaccine. Parasitology., 143(2), 171–186. https://doi.org/10.1017/S0031182015001274.

Cebrián, J., Kadomatsu-Hermosa, M. J., Castán, A., Martínez, V., Parra, C., Fernández-Nestosa, M. J., … Schvartzman, J. B. (2015). Electrophoretic mobility of supercoiled, catenated and knotted DNA molecules. Nucleic Acids Res, 43(4), e24. https://doi.org/10.1093/nar/gku1255.

Chai, C. S., & Kong, S.-C. (2017). Professional learning for 21st century education. Journal of Computers in Education, 4(1), 1–4. https://doi.org/10.1007/s40692-016-0069-y.

Chan, W. T., Verma, C. S., Lane, D. P., & Gan, S. K. E. (2013). A comparison and optimization of methods and factors affecting the transformation of Escherichia coli. Biosci Rep, 33(6), e00086. https://doi.org/10.1042/BSR20130098.

Claessens, A., Hamilton, W. L., Kekre, M., Otto, T. D., Faizullabhoy, A., Rayner, J. C., & Kwiatkowski, D. (2014). Generation of Antigenic Diversity in Plasmodium falciparum by Structured Rearrangement of Var Genes During Mitosis. PLoS Genet, 10(12), e1004812. https://doi.org/10.1371/journal.pgen.1004812.

Cutts, E. E., Laasch, N., Reiter, D. M., Trenker, R., Slater, L. M., Stansfeld, P. J., & Vakonakis, I. (2017). Structural analysis of P. falciparum KAHRP and PfEMP1 complexes with host erythrocyte spectrin suggests a model for cytoadherent knob protrusions. PLoS Pathog, 13(8), e1006552. https://doi.org/10.1371/journal.ppat.1006552.

De Koning-Ward, T. F., Dixon, M. W. A., Tilley, L., & Gilson, P. R. (2016). Plasmodium species: Master renovators of their host cells. Nat Rev Microbiol, 14(8), 494–507. https://doi.org/10.1038/nrmicro.2016.79.

Dewi, R., Ratnadewi, A. A. I., Sawitri, W. D., Rachmania, S., & Sulistyaningsih, E. (2018). Cloning, sequence analysis, and expression of CIDR1α-pfEMP1 from Indonesian plasmodium falciparum isolate. Curr Top Peptide Prot Res, 19, 95-104. Retrieved from http://www.researchtrends.net/tia/article_pdf.asp?in=0&vn=19&tid=26&aid=6269.

Gay, F., Zougbédé, S., N’Dilimabaka, N., Rebollo, A., Mazier, D., & Moreno, A. (2012). Cerebral malaria: What is known and what is on research. https://doi.org/. Rev Neurol (Paris), 166(3), 239-256. https://doi.org/10.1016/j.neurol.2012.01.582.

Githinji, G., & Bull, P. C. (2017). A re-assessment of gene-tag classification approaches for describing var gene expression patterns during human Plasmodium falciparum malaria parasite infections. Wellcome Open Res, 2, 86. https://doi.org/10.12688/wellcomeopenres.12053.1.

Goel, S., Palmkvist, M., Moll, K., Joannin, N., Lara, P. R., Akhouri, R., … Wahlgren, M. (2015). RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat Med 21(4):, 21(4), 314-317. https://doi.org/10.1038/nm.3812.

Inoue, H., H., N., & Okayama, H. (n.d.). High efficiency transformation of Escherichia coli with plasmids. Gene, 96(1), 23–28. https://doi.org/10.1016/0378-1119(90)90336-P.

Jensen, A. R., Adams, Y., & Hviid, L. (2020). Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol Rev, 293(1), 230-252. https://doi.org/10.1111/imr.12807.

Jespersen, J. S., Wang, C. W., Mkumbaye, S. I., Minja, D. T., Petersen, B., Turner, L., … Lavstsen, T. (2016). Plasmodium falciparum var genes expressed in children with severe malaria encode CIDR α1 domains. EMBO Mol Med, 8(8), 839–850. https://doi.org/10.15252/emmm.201606188.

Kelechi, A. H., Alsharif, M. H., Oluwole, D. A., Achimugu, P., Ubadike, O., Nebhen, J., … Uthansakul, P. (2021). The Recent Advancement in Unmanned Aerial Vehicle Tracking Antenna: A Review. Sensors, 21(6), 5662. https://doi.org/10.3390/s21165662.

Kuo, Y. C., Walker, A. E., Schroder, K. E. E., & Belland, B. R. (2014). “Interaction, Internet Self-Efficacy, and Self-Regulated Learningas Predictors of Student Satisfaction in Online Education Courses. Internet and Higher Education, 20, 35–50. https://doi.org/10.1016/jiheduc.2013.10.001.

Lee, P.-I., & Hsueh, P.-R. (2020). Lee, P. I., & Hsueh, P. R. (2020). Emerging Threats From Zoonotic Coronaviruses-From SARS And MERS To 2019-Ncov. Journal of Microbiology, Immunology and Infection., 53(3), 365–367. https://doi.org/10.1016/j.jmii.2020.02.001.

Mkumbaye, S. I., Wang, C. W., Lyimo, E., Jespersen, J. S., Manjurano, A., Mosha, J., … Lavstsen, T. (2017). The severity of Plasmodium falciparum infection is associated with transcript levels of var genes encoding endothelial protein C receptor-binding P. falciparum erythrocyte membrane protein 1. Infect Immun, 85(4), e00841. https://doi.org/10.1128/IAI.00841-16.

Niang, M., Bei, A. K., Madnani, K. G., Pelly, S., Dankwa, S., Kanjee, U., … Preiser, P. R. (2014). The variant STEVOR protein of Plasmodium falciparum is a red cell binding protein important for merozoite invasion and rosetting HHS Public Access. Ell Host Microbe, C16(1), 81–93. https://doi.org/10.1016/j.chom.2014.06.004.

Nureye, D., & Assefa, S. (2020). Old and Recent Advances in Life Cycle, Pathogenesis, Diagnosis, Prevention, and Treatment of Malaria Including Perspectives in Ethopia. Hindawi Sci World J, 2020:, 1295381. https://doi.org/10.1155/2020/1295381.

Rahimzadeh, M., Sadeghizadeh, M., Najafi, F., Arab, S. S., & Mobasheri, H. (2016). Impact of heat shock on bacterial transformation efficiency. Mol Biol Res Commun, 5(4), 257-261. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326489/pdf/mbrc-5-257.pdf.

Rask, T. S., Hansen, D. A., Theander, T. G., Pedersen, A. G., & Lavstsen, T. (2010). Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes - divide and conquer. PLoS Comput Biol, 6(9), e1000933. https://doi.org/10.1371/journal.pcbi.1000933.

Ren, J., Karna, S., Lee, H. M., Yoo, S. M., & Na, D. (2019). Artificial transformation methodologies for improving the efficiency of plasmid DNA transformation and simplifying its use. Appl Microbiol Biotechnol, 103(23–24), 9205–9215. https://doi.org/10.1007/s00253-019-10173-x.

Riskesdas. (2018). Hasil Utama Riset Kesehatan Dasar. Kementerian Kesehatan Republik Indonesia.

Rivera, A. L., Gomez-Lim, M., Fernadez, F., & Loske, A. M. (2014). Genetic Transformation of Cells using Physical Methods. J Genet Syndr Gene Ther, 5, 4. https://doi.org/10.4172/2157-7412.1000237.

Singh, M., Yadav, A., Ma, X., & Amoah, E. (2010). Plasmid DNA transformation in Escherichia Coli: effect of heat shock temperature, duration, and cold incubation of CaCl2 treated cells. Int J Biotechnol Biochem, 6(4), 561-568. Retrieved from http://www.ripublication.com/ijbb.htm.

Stellwagen, N. C., & Stellwagen, E. (2009). Effect of the matrix on DNA electrophoretic mobility. J Chromatogr A, 1216(10), 1917-1929. https://doi.org/10.1016/j.chroma.2008.11.090.

Sulistyaningsih, E., Fitri, L. E., Löscher, T., & Berens-Riha, N. (2013). Diversity of the var gene family of Indonesian Plasmodium falciparum isolates. https://doi.org/. Malar J, 12(80). https://doi.org/10.1186/1475-2875-12-80.

Wang, Y., Wang, X., Yu, L., Tian, Y., Li, S., Leng, F., … Chen, J. (2020). Effects of Sr2+ on the preparation of Escherchia coli DH5α competent cells and plasmid transformation. PeerJ, 8, e9480. https://doi.org/10.7717/peerj.9480.

Wassmer, S. C., Taylor, T. E., Rathod, P. K., Mishra, S. K., Mohanty, S., Herrera, M. A., … Smith, J. . (2015). Investigating the Pathogenesis of Severe Malaria: A Multidisciplinary and Cross-Geographical Approach. :. https://doi.org/. Am J Trop Med Hyg, 93((3 Suppl)), 42–56. https://doi.org/10.4269/ajtmh.14-0841.

WHO. (2020). World Malaria Report 2020. World Health Organization.

Zhou, J., Li, X., Xia, J., Wen, Y., Zhou, J., Yu, Z., & Tian, B. (2018). The role of temperature and bivalent ions in preparing competent Escherichia coli. 3 Biotech, 8(5), 222. https://doi.org/10.1007/s13205-018-1243-x.

Downloads

Published

2023-03-20

Issue

Section

Articles