Pembentukan Lapisan Anodik Aluminium Oksida melalui Metode Anodisasi untuk Proses Pewarnaan Dyeing pada Aluminium
DOI:
https://doi.org/10.23887/jstundiksha.v12i2.53782Keywords:
Anodisasi, Dyeing, AAOAbstract
Anodisasi adalah proses elektrokimia ramah lingkungan untuk memproduksi lapisan oksida tipis hingga berukuran nanometer pada permukaan logam sehingga menjadi lebih dekoratif, tahan lama, dan tahan korosi. Proses anodisasi dalam larutan H2SO4 digunakan guna mempersiapkan lapisan anodik aluminium oksida (AAO) untuk selanjutnya dilakukan pewarnaan dengan metode dyeing. Pengaruh rapat arus dan waktu celup anodisasi terhadap permukaan hasil pewarnaan serta ketahanan korosi logam aluminium di investigasi dalam penelitian ini. Spesimen aluminium murni dilakukan proses anodisasi dalam larutan 16% H2SO4 dengan rapat arus 1, 3, dan 5 A/dm2 selama 40 dan 60 menit untuk selanjutnya dilakukan pencelupan ke dalam larutan dyeing non elektrolitik. Hasil pewarnaan menunjukkan bahwa tingkat penyerapan zat warna paling tinggi dalam parameter rapat arus 3 A/dm2. Selain itu, peningkatan waktu celup hingga 60 menit dapat meningkatkan kepekatan warna yang diserap. Pengujian korosi menggunakan metode salt spray memperlihatkan bahwa proses anodisasi dan pewarnaan dapat meningkatkan ketahanan korosi pada logam aluminium. Hasil pengujian kekerasan Vickers menunjukkan bahwa semakin tinggi rapat arus menghasilkan penurunan kekerasan rata-rata pada permukaan aluminium hasil anodisasi.
References
Abd-Elnaiem, A. M., & Rashad, M. (2018). Morphology of anodic aluminum oxide anodized in a mixture of phosphoric acid and lithium phosphate monobasic. Materials Research Express, 6(1). https://doi.org/10.1088/2053-1591/aae32d.
Alves, G. J. T., Maia, G. A. R., Antunes, S. R. M., Oliveira, M. de F., Cunha, M. T. da, & Rodrigues, P. R. P. (2018). Application of experimental design for AA6351 aluminum alloy anodization and coloring. Materials Research Express, 6(1). https://doi.org/10.1088/2053-1591/aae347.
Bononi, M., Conte, M., Giovanardi, R., & Bozza, A. (2017). Hard anodizing of AA2099-T8 aluminum lithium copper alloy: Influence of electric cycle, electrolytic bath composition and temperature. Surface and Coatings Technology, 325, 627–635. https://doi.org/10.1016/j.surfcoat.2017.07.028.
Donahue, C. J., & Exline, J. A. (2014). Anodizing and Coloring Aluminum Alloys. Journal of Chemical Education, 91(5), 711–715. https://doi.org/10.1021/ed3005598.
Iwai, M., & Kikuchi, T. (2021). Fabrication of unique porous alumina films with extremely high porosity and an ultra-flat barrier layer by anodizing aluminum in sodium metaborate. Electrochimica Acta, 399. https://doi.org/10.1016/j.electacta.2021.139440.
Kale, V. N., Rajesh, J., Maiyalagan, T., Lee, C. W., & Gnanamuthu, R. M. (2022). Fabrication of Ni–Mg–Ag alloy electrodeposited material on the aluminium surface using anodizing technique and their enhanced corrosion resistance for engineering application. Materials Chemistry and Physics, 282. https://doi.org/10.1016/j.matchemphys.2022.125900.
Kikuchi, T., Taniguchi, T., Suzuki, R. O., & Natsui, S. (2020). Fabrication of a plasma electrolytic oxidation/anodic aluminum oxide multi-layer film via one-step anodizing aluminum in ammonium carbonate. Thin Solid Films, 697. https://doi.org/10.1016/j.tsf.2020.137799.
Kongvarhodom, C., Khumsa-Ang, K., Siripornmongkolchai, B., Jearasupat, S., & Turner, C. W. (2020). Anodic aluminum oxide film fabricated with galvanostatic anodization for non-electrolytic dyeing. Materials Letters, 261. https://doi.org/10.1016/j.matlet.2019.126992.
Kozhukhova, A. E., du Preez, S. P., & Bessarabov, D. G. (2019). Preparation of anodized aluminium oxide at high temperatures using low purity aluminium (Al6082). Surface and Coatings Technology, 378. https://doi.org/10.1016/j.surfcoat.2019.124970.
Li, Z., Wei, H., Chen, D., Chang, M., Hu, H., Ye, X., Zhang, Y., … Wang, M. (2021). Optical properties of multicolor, hierarchical nanocomposite films based on anodized aluminum oxide. Optical Materials, 111. https://doi.org/10.1016/j.optmat.2020.110557.
Li, J., Zhu, K., Wang, J., Yan, K., Liu, J., Yao, Z., & Xu, Y. (2019). Optimisation of conductivity of PEO/PVDF-based solid polymer electrolytes in all-solid-state Li-ion batteries. Materials Technology, 4(37), 1. https://doi.org/10.1080/10667857.2020.1827873.
Liu, D., Wei, G., He, P., & Hou, H. (2016). The Effect of Sealing and Trivalent Chromium Passivating on Anodized AluminumSci. . . In Int. J. Electrochem., 11. Retrieved from www.electrochemsci.org
Luo, X., Ren, C., Wu, J., Zhang, D., Xi, Y., Yan, X., … Dong, C. (2022). Experimental and computational insights into self-assembly sodium oleate on anodized aluminum interface in electric field. Corrosion Science. https://doi.org/10.1016/j.corsci.2022.110334.
Maksymuk, M., Zazakowny, K., Lis, A., Kosonowski, A., Parashchuk, T., & Wojciechowski, K. T. (2022). Development of the anodized aluminum substrates for thermoelectric energy converters. Ceramics International. https://doi.org/10.1016/j.ceramint.2022.09.371.
Mohammed, H., Moreno, J., & Kosel, J. (2018). Advanced Fabrication and Characterization of Magnetic. Nanowires. https://doi.org/10.5772/intechopen.71077.
Mun, S. C., Kang, G. C., Jeong, Y. B., Park, H. J., Kim, Y. S., Hong, S. H., … Kim, K. B. (2021). Development of coloring alloys: Color design for lightweight Al-Mg-Si alloys. Materials & Design, 200. https://doi.org/10.1016/j.matdes.2021.109449.
Musselman, K. P., Delumeau, L. V., Araujo, R., Wang, H., & MacManus-Driscoll, J. (2020). Electrochemical removal of anodic aluminium oxide templates for the production of phase-pure cuprous oxide nanorods for antimicrobial surfaces. Electrochemistry Communications, 120. https://doi.org/10.1016/j.elecom.2020.106833.
Regone, N. N., Casademont, C., & Arurault, L. (2022). Influence of the anodization electrical mode on the final properties of electrocolored and sealed anodic films prepared on 1050 aluminum alloy. Materials Chemistry and Physics, 288. https://doi.org/10.1016/j.matchemphys.2022.126369.
Safyari, M., Mori, G., Ucsnik, S., & Moshtaghi, M. (2023). Mechanisms of hydrogen absorption, trapping and release during galvanostatic anodization of high-strength aluminum alloys. Journal of Materials Research and Technology, 20, 80–88. https://doi.org/10.1016/j.jmrt.2022.11.111.
Sepulveda-Escobar, P., & Morrison, A. (2020). Online teaching placement during the COVID-19 pandemic in Chile: challenges and opportunities. European Journal of Teacher Education, 43(4), 587–607. https://doi.org/10.1080/02619768.2020.1820981.
Shaffei, M. F., Hussein, H. S., Awad Abouelata, A. M., Osman, R. M., & Mohammed, M. S. (2021). Effect of sealing on characteristics of nano-porous aluminum oxide as black selective coatings. Cleaner Engineering and Technology, 4. https://doi.org/10.1016/j.clet.2021.100156.
Strąk, A., Małek, M., Chlanda, A., & Sudoł, E. (2022). The impact of temperature and mechanical load on corrosion resistance of anodized aluminum EN AW-6063 (T6 temper) alloy for potential architectonic application. Journal of Building Engineering, 50. https://doi.org/10.1016/j.jobe.2022.104128.
Su, D., & Chen, E. (2022). Construction of fluorescent anodic aluminum oxide films coloured by 3,4:9,10-perylene tetracarboxylic salt. Materials Chemistry and Physics, 285. https://doi.org/10.1016/j.matchemphys.2022.126095.
Sundararajan, M., Devarajan, M., & Jaafar, M. (2020). Investigation of surface and mechanical properties of Anodic Aluminium Oxide (AAO) developed on Al substrate for an electronic package enclosure. Surface and Coatings Technology. Surface and Coatings Technology, 401. https://doi.org/10.1016/j.surfcoat.2020.126273.
Terashima, A., Iwai, M., & Kikuchi, T. (2022). Nanomorphological changes of anodic aluminum oxide fabricated by anodizing in various phosphate solutions over a wide pH range. Applied Surface Science, 605. https://doi.org/10.1016/j.apsusc.2022.154687.
Truong, P. van Bo, N. van, Minh, N. van Anh, N. V., Suresh Kumar, G., & Shkir, M. (2022). Investigation of corrosion and wear resistance of PEO coated D16T aluminium alloys in the marine tropical climate conditions.,. Materials Chemistry and Physics, 290. https://doi.org/10.1016/j.matchemphys.2022.126587.
Usman, B. J., & Curioni, M. (2021). Influence of temperature on the corrosion testing of anodized aerospace alloys. Corrosion Science, 192. https://doi.org/10.1016/j.corsci.2021.109772.
Vanpaemel, J., Abd-Elnaiem, A. M., de Gendt, S., & Vereecken, P. M. (2015). The Formation Mechanism of 3D Porous Anodized Aluminum Oxide Templates from an Aluminum Film with Copper Impurities. The Journal of Physical Chemistry C, 119(4), 2105–2112. https://doi.org/10.1021/jp508142m.
Wang, Z., Li, M., Han, Q., Yun, X., Zhou, K., Gardner, L., & Mazzolani, F. M. (2022). Structural fire behaviour of aluminium alloy structures: Review and outlook. Engineering Structures, , 114746. doi: https://doi.org/. Engineering Structures, 268. https://doi.org/10.1016/j.engstruct.2022.114746.
Xu, Q., Ye, W.-J., Feng, S.-Z., & Sun, H.-Y. (2014). Synthesis and properties of iridescent Co-containing anodic aluminum oxide films. Dyes and Pigments, 111, 111, 185–189. https://doi.org/10.1016/j.dyepig.2014.06.012.
Yeh, S.-C., Tsai, D.-S., Wang, J.-M., & Chou, C.-C. (2016). Coloration of the aluminum alloy surface with dye emulsions while growing a plasma electrolytic oxide layer. Surface and Coatings Technology, 287, 61–66. https://doi.org/10.1016/j.surfcoat.2015.12.091.
Zakiyuddin, Z., Firzan, F., Yarmaliza, Y., Farisni, T. N., Fitriani, F., Reynaldi, F., … Umar, U. T. (2021). Meningkatkan Program Pemberdayaan Perempuan dan Keluarga Berencana. COMSEP: Jurnal Pengabdian Kepada Masyarakat, 2(1), 107–112.
Zhang, C. Y., Shao, W. L., Zhou, W. X., Liu, Y., Han, Y. Y., Zheng, Y., & Liu, Y. J. (2019). Biodiesel production by esterification reaction on k+ modified mgal-hydrotalcites catalysts. Catalysts, 9(9). https://doi.org/10.3390/catal9090742.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Vika Rizkia, Iwan Susanto, Gun Gun Ramdlan Gunadi, Ghany Heryana
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)