Comparison of Baby Walkers Against Toddler Walking Ability Using Biomechanics Through Kinect Sensor and Force Sensing Resistor Measurements

Authors

  • Lobes Herdiman Universitas Sebelas Maret, Surakarta, Indonesia
  • Susy Susmartini Universitas Sebelas Maret, Surakarta, Indonesia
  • Sukma Yustika Andriani Universitas Sebelas Maret, Surakarta, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v13i1.57094

Keywords:

Babies, Biomechanics, Foot Compression Force, Foot Pressure, Force Sensing Resistors, Kinect Sensors

Abstract

The investigation stimulates toddlers to learn to walk using a baby walker (BW), allowing the toddler's soles to land on the floor surface. This research compares the effectiveness of using BWstandard and Redesign in stimulating toddlers to learn to walk with Kinect Sensor and Force Sensing Resistor (FSR) devices using video-based biomechanics. This research involved 9 toddlers; the minimum age of toddlers was 9 months, body length 70-80cm, and foot length 10-12cm. The biomechanics of toddlers on leg compression are performed via video in real-time using Kinect Sensor with movement analysis developed through Microsoft Visual Studio Software and Vitruvius Software. Measuring foot pressure using FSR is connected to the Arduino IDE system and placed in the prewalker sock via 5 reading points. Statistical tests use paired sample t-tests. Toddler foot compression force using BWstandard (Redesign), heel-strike phase 218.98 N (447.66 N), midstance phase 273.08 N (462.61 N), toe-off phase 181.94 N (371.99 N), and foot pressure 248 N (339 N). The results of the Pair sample t-test showed that there was a difference in use between BWstandard and Redesign. It was concluded that stimulation of toddlers learning to walk was achieved more effectively using BWredesign and was more recommended.

References

Adolph, K. E., & Franchak, J. M. (2017). The development of motor behavior. Wiley Interdisciplinary Reviews: Cognitive Science, 8(1–2). https://doi.org/10.1002/wcs.1430.

Badihian, S., Badihian, N., & Yaghini, O. (2017). The effect of baby walker on child development: a systematic review. Iranian Journal of Child Neurology, 11(4), 1–6. https://doi.org/10.22037/ijcn.v11i4.15509.

Baserga, A., Grandi, F., Masciadri, A., Comai, S., & Salice, F. (2021). High-Efficiency Multi-Sensor System for Chair Usage Detection. Sensors, 21(22), 7580. https://doi.org/10.3390/s21227580.

Bijalwan, V., Semwal, V. B., & Mandal, T. K. (2021). Fusion of multi-sensor-based biomechanical gait analysis using vision and wearable sensor. IEEE Sensors Journal, 21(13), 14213–14220. https://doi.org/10.1109/JSEN.2021.3066473.

Castellanos-Ramos, J., Trujillo-León, A., Navas-González, R., Barbero-Recio, F., Sánchez-Durán, J. A., Oballe-Peinado, Ó., & Vidal-Verdú, F. (2019). Adding proximity sensing capability to tactile array based on off-the-shelf FSR and PSoC. IEEE Transactions on Instrumentation and Measurement, 69(7), 4238–4250. https://doi.org/10.1109/TIM.2019.2944555.

Chagas, P. S., Fonseca, S. T., Santos, T. R., Souza, T. R., Megale, L., Silva, P. L., & Mancini, M. C. (2020). Effects of baby walker use on the development of gait by typically developing toddlers. Gait & Posture, 76, 231–237. https://doi.org/10.1016/j.gaitpost.2019.12.013.

Chen, D., Cai, Y., Qian, X., Ansari, R., Xu, W., Chu, K. C., & Huang, M. C. (2019). Bring gait lab to everyday life: Gait analysis in terms of activities of daily living. IEEE Internet of Things Journal, 7(2), 1298–1312. https://doi.org/10.1109/JIOT.2019.2954387.

Chen, J. P., Chung, M. J., Wu, C. Y., Cheng, K. W., & Wang, M. J. (2015). Comparison of barefoot walking and shod walking between children with and without flat feet. Journal of the American Podiatric Medical Association, 105(3), 218–225. https://doi.org/10.7547/0003-0538-105.3.218.

Clark, R. A., Mentiplay, B. F., Hough, E., & Pua, Y. H. (2019). Three-dimensional cameras and skeleton pose tracking for physical function assessment: A review of uses, validity, current developments and Kinect alternatives. Gait & Posture, 68, 193–200. https://doi.org/10.1016/j.gaitpost.2018.11.029

Cole, W. G., Robinson, S. R., & Adolph, K. E. (2016). Bouts of steps: The organization of infant exploration. Developmental Psychobiology, 58(3), 341–354. https://doi.org/10.1002/dev.21374.

Cranage, S., Perraton, L., Bowles, K. A., & Williams, C. (2021). A comparison of young children’s spatiotemporal gait measures in three common types of footwear with different sole hardness. Gait & Posture, 90, 276–282. https://doi.org/10.1016/j.gaitpost.2021.09.165.

Di Marco, R., Rossi, S., Racic, V., Cappa, P., & Mazzà, C. (2016). Concurrent repeatability and reproducibility analyses of four marker placement protocols for the foot-ankle complex. Journal of Biomechanics, 49(14), 3168–3176. https://doi.org/10.1016/j.jbiomech.2016.07.041.

do Carmo Vilas-Boas, M., Choupina, H. M. P., Rocha, A. P., Fernandes, J. M., & Cunha, J. P. S. (2019). Full-body motion assessment: Concurrent validation of two body tracking depth sensors versus a gold standard system during gait. Journal of Biomechanics, 87, 189–196. https://doi.org/10.1016/j.jbiomech.2019.03.008.

Dolatabadi, E., Taati, B., & Mihailidis, A. (2016). Concurrent validity of the Microsoft Kinect for Windows v2 for measuring spatiotemporal gait parameters. Medical Engineering & Physics, 38(9), 952–958. https://doi.org/10.1016/j.medengphy.2016.06.015.

Gan, J., Zhang, J., Ge, M. F., & Tu, X. (2022). Designs of compliant mechanism-based force sensors: A review. IEEE Sensors Journal, 22(9), 8282–8294. https://doi.org/10.1109/JSEN.2022.3161963.

Gimunová, M., Kolářová, K., Vodička, T., Bozděch, M., & Zvonař, M. (2022). How barefoot and conventional shoes affect the foot and gait characteristics in toddlers. Plos One, 17(8). https://doi.org/10.1371/journal.pone.0273388.

Grivna, M., Barss, P., Al-Hanaee, A., Al-Dhahab, A., Al-Kaabi, F., & Al-Muhairi, S. (2015). Baby Walker Injury Awareness Among Grade-12 Girls in a High-Prevalence Arab Country in the Middle East. Asia Pacific Journal of Public Health, 27(2). https://doi.org/10.1177/1010539513498766.

Hadders-Algra, M. (2018). Early human motor development: From variation to the ability to vary and adapt. Neuroscience & Biobehavioral Reviews, 90, 411–427. https://doi.org/10.1016/j.neubiorev.2018.05.009.

Han, Y. C., Wong, K. I., & Murray, I. (2019). Gait phase detection for normal and abnormal gaits using IMU. IEEE Sensors Journal, 19(9), 3439–3448. https://doi.org/10.1109/JSEN.2019.2894143

Janusz, P., Pikulska, D., Kapska, N., Kaniowska, M., Darcz, M., Bykowski, B., & Shadi, M. (2023). Association between baby walker use and infant functional motor development. Pediatric Physical Therapy, 35(2), 237–241. https://doi.org/10.1097/PEP.0000000000000995.

Kaddis, M., Stockton, K., & Kimble, R. (2016). Trauma in children due to wheeled recreational devices. Journal of Paediatrics and Child Health, 52(1), 30–33. https://doi.org/10.1111/jpc.12986.

Kepenek-Varol, B., Hoşbay, Z., Varol, S., & Torun, E. (2020). Assessment of motor development using the Alberta Infant Motor Scale in full-term infants. The Turkish Journal of Pediatrics, 62(1), 94–102. https://doi.org/10.24953/turkjped.2020.01.013.

Knippenberg, E., Verbrugghe, J., Lamers, I., Palmaers, S., Timmermans, A., & Spooren, A. (2017). Markerless motion capture systems as training device in neurological rehabilitation: a systematic review of their use, application, target population and efficacy. Journal of Neuroengineering and Rehabilitation, 14, 1–11. https://doi.org/10.1186/s12984-017-0270-x.

Krivova, A. V., & Sharov, A. N. (2018). Baby walkers and the phenomenon of toe-walking. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery, 6(1), 23–32. https://doi.org/10.17816/PTORS6123-32.

Leardini, A., Stebbins, J., Hillstrom, H., Caravaggi, P., Deschamps, K., & Arndt, A. (2021). ISB recommendations for skin-marker-based multi-segment foot kinematics. Journal of Biomechanics, 125. https://doi.org/10.1016/j.jbiomech.2021.110581.

LeBarton, E. S., & Iverson, J. M. (2016). Associations between gross motor and communicative development in at-risk infants. Infant Behavior and Development, 44, 59–67. https://doi.org/10.1016/j.infbeh.2016.05.003.

Lee, D. K., Cole, W. G., Golenia, L., & Adolph, K. E. (2018). The cost of simplifying complex developmental phenomena: A new perspective on learning to walk. Developmental Science, 21(4). https://doi.org/10.1111/desc.12615.

Liu, C. H., Lee, P., Chen, Y. L., Yen, C. W., & Yu, C. W. (2020). Study of postural stability features by using kinect depth sensors to assess body joint coordination patterns. Sensors, 20(5), 1291. https://doi.org/10.3390/s20051291.

Ma, Y., Mithraratne, K., Wilson, N. C., Wang, X., Ma, Y., & Zhang, Y. (2019). The validity and reliability of a kinect v2-based gait analysis system for children with cerebral palsy. Sensors, 19(7), 1660. https://doi.org/10.3390/s19071660.

Melike, M. E. T. E., Devecioğlu, E., Boran, P., Yetim, A., Pazar, A., & Gökçay, G. (2017). Baby Walker Use and Its Consequences in a Group of Turkish Children. Çocuk Dergisi, 17(4), 158–162. https://doi.org/10.5222/j.child.2017.158.

Mendonça, B., Sargent, B., & Fetters, L. (2016). Cross-cultural validity of standardized motor development screening and assessment tools: a systematic review. Developmental Medicine & Child Neurology, 58(12), 1213–1222. https://doi.org/10.1111/dmcn.13263.

Mentiplay, B. F., Hasanki, K., Perraton, L. G., Pua, Y. H., Charlton, P. C., & Clark, R. A. (2018). Three-dimensional assessment of squats and drop jumps using the Microsoft Xbox One Kinect: Reliability and validity. Journal of Sports Sciences, 36(19), 2202–2209. https://doi.org/10.1080/02640414.2018.1445439.

Mentiplay, B. F., Perraton, L. G., Bower, K. J., Pua, Y. H., McGaw, R., Heywood, S., & Clark, R. A. (2015). Gait assessment using the Microsoft Xbox One Kinect: Concurrent validity and inter-day reliability of spatiotemporal and kinematic variables. Journal of Biomechanics, 48(10), 2166–2170. https://doi.org/10.1016/j.jbiomech.2015.05.021.

Moe-Nilssen, R., & Helbostad, J. L. (2020). Spatiotemporal gait parameters for older adults–an interactive model adjusting reference data for gender, age, and body height. Gait & Posture, 82, 220–226. https://doi.org/10.1016/j.gaitpost.2020.09.009.

Mulyani, N., & Budiarti, Y. (2022). Rancangan Alat Bantu Stimulasi Berjalan untuk Meningkatkan Kemampuan Berjalan Anak Usia 9–15 Bulan di Kota Tasikmalaya. Jurnal Riset Kesehatan Poltekkes Depkes Bandung, 14(2), 402–408. https://doi.org/10.34011/juriskesbdg.v14i2.2020.

Naderi, A., Degens, H., & Sakinepoor, A. (2019). Arch-support foot-orthoses normalize dynamic in-shoe foot pressure distribution in medial tibial stress syndrome. European Journal of Sport Science, 19(2), 247–257. https://doi.org/10.1080/17461391.2018.1503337.

Negi, S., Sharma, S., & Sharma, N. (2021). FSR and IMU sensors-based human gait phase detection and its correlation with EMG signal for different terrain walk. Sensor Review, 41(3), 235–245. https://doi.org/10.1108/SR-10-2020-0249.

Pfister, A., West, A. M., Bronner, S., & Noah, J. A. (2014). Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. Journal of Medical Engineering & Technology, 38(5), 274–280. https://doi.org/10.3109/03091902.2014.909540.

Price, C., Morrison, S. C., Hashmi, F., Phethean, J., & Nester, C. (2018). Biomechanics of the infant foot during the transition to independent walking: A narrative review. Gait & Posture, 59, 140–146. https://doi.org/10.1016/j.gaitpost.2017.09.005.

Roche, N., Chorin, F., Gerus, P., Deshayes, M., Guerin, O., & Zory, R. (2021). Effects of age, gender, frailty and falls on spatiotemporal gait parameters: a retrospective cohort study. European Journal of Physical and Rehabilitation Medicine, 57(6), 923–930. https://doi.org/10.23736/s1973-9087.21.06831-3.

Sadiman, S., Islamiyati, I., & Sumiyati, S. (2023). Analisis Stimulasi Kemampuan Berjalan pada Bayi Usia 9–12 Bulan di Wilayah Puskesmas Sritejokencono Lampung Tengah. Media Informasi, 19(1), 62–66. https://doi.org/10.37160/bmi.v19i1.191.

Savoie, P., Cameron, J. A., Kaye, M. E., & Scheme, E. J. (2019). Automation of the timed-up-and-go test using a conventional video camera. IEEE Journal of Biomedical and Health Informatics, 24(4), 1196–1205. https://doi.org/10.1109/JBHI.2019.2934342.

Schopf, P. P., & Santos, C. C. (2015). The Influence of Baby Walker Usage in The Sensory Motor Development of Children At Schools in Early Childhood Education. Journal of Human Growth and Development, 25(2), 156–161. https://doi.org/10.7322/jhgd.102998.

Sharov, A. N., Krivova, A. V., Rodionova, S. S., & Zakharov, V. P. (2018). Damage associated with the use of baby walkers. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery J, 6(4), 1–11. https://doi.org/10.17816/PTORS6448-58.

Sifuentes, E., Gonzalez-Landaeta, R., Cota-Ruiz, J., & Reverter, F. (2019). Seat occupancy detection based on a low-power microcontroller and a single FSR. Sensors, 19(3), 699. https://doi.org/10.3390/s19030699.

Sims, A., Chounthirath, T., Yang, J., Hodges, N. L., & Smith, G. A. (2018). Infant Walker–Related Injuries in the United States. Pediatrics, 142(4). https://doi.org/10.1542/peds.2017-4332.

Springer, S., & Yogev Seligmann, G. (2016). Validity of the kinect for gait assessment: A focused review. Sensors, 16(2), 194. https://doi.org/10.3390/s16020194.

Taş, S., & Çetin, A. (2019). An investigation of the relationship between plantar pressure distribution and the morphologic and mechanic properties of the intrinsic foot muscles and plantar fascia. Gait & Posture, 72, 217–221. https://doi.org/10.1016/j.gaitpost.2019.06.021.

Uchida, T. K., & Delp, S. L. (2021). Biomechanics of movement: the science of sports, robotics, and rehabilitation. MIT press.

Van der Kruk, E., & Reijne, M. M. (2018). Accuracy of human motion capture systems for sport applications; state-of-the-art review. European Journal of Sport Science, 18(6), 806–819. https://doi.org/10.1080/17461391.2018.1463397.

Van Hooren, B., Pecasse, N., Meijer, K., & Essers, J. M. N. (2023). The accuracy of markerless motion capture combined with computer vision techniques for measuring running kinematics. Scandinavian Journal of Medicine & Science in Sports, 33(6), 966–978. https://doi.org/10.1111/sms.14319.

Yagi, K., Sugiura, Y., Hasegawa, K., & Saito, H. (2020). Gait Measurement at Home Using A Single RGB Camera. Gait & Posture, 76, 136–140. https://doi.org/10.1016/j.gaitpost.2019.10.006.

Yang, Y., Pu, F., Li, Y., Li, S., Fan, Y., & Li, D. (2014). Reliability and validity of Kinect RGB-D sensor for assessing standing balance. IEEE Sensors Journal, 14(5), 1633–1638. https://doi.org/10.1109/JSEN.2013.2296509.

Yeung, L. F., Yang, Z., Cheng, K. C. C., Du, D., & Tong, R. K. Y. (2021). Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2. Gait & Posture, 87, 19–26. https://doi.org/10.1016/j.gaitpost.2021.04.005.

Downloads

Published

2024-04-04

How to Cite

Herdiman, L., Susy Susmartini, & Sukma Yustika Andriani. (2024). Comparison of Baby Walkers Against Toddler Walking Ability Using Biomechanics Through Kinect Sensor and Force Sensing Resistor Measurements. JST (Jurnal Sains Dan Teknologi), 13(1), 41–56. https://doi.org/10.23887/jstundiksha.v13i1.57094

Issue

Section

Articles