Hydraulic Retention Time dan Pengaruhnya terhadap Kualitas Biogas dari Kotoran Sapi Menggunakan Digester Anaerobik Tipe Batch Skala Kecil

Authors

  • Nanang Apriandi Politeknik Negeri Semarang https://orcid.org/0000-0002-5404-8419
  • Suwarti Suwarti Politeknik Negeri Semarang, Semarang, Indonesia
  • Wiwik Purwati Widyaningsih Politeknik Negeri Semarang, Semarang, Indonesia
  • Rani Raharjanti Politeknik Negeri Semarang, Semarang, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i1.57310

Keywords:

Biogas, Hydraulic Retention Time, Batch Digester, Quality, Heating Value

Abstract

Dalam merancang digester biogas skala besar dan beroperasi jangka panjang dengan ketersediaan bahan baku setiap hari, penting untuk mengetahui waktu retensi hidrolik (HRT) dari substrat guna mengoptimalkan proses dekomposisi dan mendapatkan kualitas biogas yang baik. Komposisi gas terutama metana (CH4) menjadi dasar penentuan kualitas biogas. Pendekatan eksperimental menggunakan digester anaerobik tipe batch berkapasitas 50 liter dilakukan untuk menginvestigasi pengaruh HRT pada proses dekomposisi anaerobik terhadap kualitas biogas. Campuran kotoran sapi dan air dengan perbandingan 1:1 dan 1:2 digunakan sebagai substrat. Selanjutnya, kondisi proses dan kualitas biogas dianalisis dan dievaluasi dengan variabel HRT 3, 7, 14, 21, dan 28 hari. Hasil penelitian menunjukkan bahwa kualitas biogas tertinggi diperoleh dari proses dekomposisi anaerobik dengan komposisi substrat 1:1 dan pada HRT 28 hari, dengan kandungan CH4 sebesar 62,23 %vol dan nilai kalor sebesar 21745,71 kJ/m3. Hasil investigasi ini dapat dijadikan acuan di dalam merancang digester biogas skala besar dan beroperasi jangka panjang untuk berbagai tipe digester yang berbeda. Semakin lama HRT substrat pada proses dekomposisi anaerobik di dalam digester, semakin tinggi persentase kandungan CH4 dalam biogas, dan semakin tinggi pula nilai kalornya.

References

Alam, M., Sultan, M. B., Mehnaz, M., Fahim, C. S. U., Hossain, S., & Anik, A. H. (2022). Production of biogas from food waste in laboratory scale dry anaerobic digester under mesophilic condition. Energy Nexus, 7, 100126. https://doi.org/10.1016/j.nexus.2022.100126.

Anaswara, M. G. (2015). Design and Fabrication of Low Cost Biogas Digester Using Poultry Waste and Pig Manure. International Research Journal of Engineering and Technology, 2(4), 1923–1930. Retrieved from https://www.irjet.net.

Apriandi, N. (2021). Analisa Biodigester Polyethilene Skala Rumah Tangga Dengan Memanfaatkan Limbah Organik Sebagai Sumber Penghasil Biogas. Orbith, 17(1), 23–29.

Apriandi, N., Sumarno, F. G., An-Nizhami, A., Luthfiana, N. T. A., Kholifah, N. N., A’tohillah, M. K., & Prakoso, R. G. A. (2022). Karakterisasi Alat Pengering Tipe Kabinet Berbahan Bakar Liquefied Petrolium Gas (LPG) Dengan Penambahan Low Cost Material Heat Storage (LCMHS). Jurnal Rekayasa Mesin, 17(2), 281–288. Retrieved from https://jurnal.polines.ac.id/index.php/rekayasa.

Apriandi, N., Widyaningsih, W. P., Margana, Surindra, M. D., Supriyo, & Luthfiana, N. T. A. . (2022). Biogas Desulfurization Using Iron Gram Waste Machining Practicum Process at The Departement of Mechanical Engineering, Pliteknik Negeri Semarang. Eksergi, 18(3), 182–185. https://doi.org/10.3390/catal10050521.

Atmodjo, M. C. T., Rosadi, D., & Hardoyo. (2014). Perancangan Tangki Biogas Portabel Sebagai Sarana Produksi Energi Alternatif di Pedesaan. Widyariset, 17(3), 409–416.

Chae, K. J., Jang, A., Yim, S. K., & Kim, I. S. (2008). The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresource Technology, 99(1), 1–6. https://doi.org/10.1016/j.biortech.2006.11.063.

Cheng, S., Li, Z., Mang, H. P., Huba, E. M., Gao, R., & Wang, X. (n.d.). Development and application of prefabricated biogas digesters in developing countries. Renewable and Sustainable Energy Reviews, 34, 387–400. https://doi.org/10.1016/j.rser.2014.03.035.

Cheng, S., Li, Z., Mang, H. P., Huba, E. M., Gao, R., & Wang, X. (2014). Development and application of prefabricated biogas digesters in developing countries. Renewable and Sustainable Energy Reviews, 34, 387–400. https://doi.org/10.1016/j.rser.2014.03.035.

Chibueze, U., Okorie, N., Oriaku, O., Isu, J., & Peters, E. (2017). The Production of Biogas Using Cow Dung and Food Waste. International Journal of Materials and Chemistry, 7(2), 21–24. https://doi.org/10.5923/j.ijmc.20170702.01.

Cuéllar, A. D., & Webber, M. E. (2008). Cow Power: The Energy and Emissions Benefits of Converting Manure to Biogas. Environmental Research Letters, 3(3), 1–8. https://doi.org/10.1088/1748-9326/3/3/034002.

Dareioti, M. A., & Kornaros, M. (2014). Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresource Technology, 167, 407–415. https://doi.org/10.1016/j.biortech.2014.06.045.

Dębowski, M., Kazimierowicz, J., Zieliński, M., & Bartkowska, I. (2022). Co-Fermentation of Microalgae Biomass and Miscanthus × giganteus Silage—Assessment of the Substrate, Biogas Production and Digestate Characteristics. Applied Sciences (Switzerland), 12(14). https://doi.org/10.3390/app12147291.

Deepanraj, B., Sivasubramanian, V., & Jayaraj, S. (2015). Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor. Ecotoxicology and Environmental Safety, 121, 100–104. https://doi.org/10.1016/j.ecoenv.2015.04.051.

Ejiko, S. O., Adewuyi, R. A., & Filani, O. A. (2019). Development of an House Hold Biogas Digester. International Journal of Modern Studies in Mechanical Engineering, 5(4), 23–32. https://doi.org/10.20431/2454-9711.0504003.

Franqueto, R., da Silva, J. D., & Konig, M. (2020). Effect of Temperature Variation on Codigestion of Animal Waste and Agricultural Residue for Biogas Production. Bioenergy Research, 13(2), 630–642. https://doi.org/10.1007/s12155-019-10049-y.

Gao, W. J., Leung, K. T., Qin, W. S., & Liao, B. Q. (2011). Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor. Bioresource Technology, 102(19), 8733–8740. https://doi.org/10.1016/j.biortech.2011.07.095.

González, R., Peña, D. C., & Gómez, X. (2022). Anaerobic Co-Digestion of Wastes: Reviewing Current Status and Approaches for Enhancing Biogas Production. Applied Sciences (Switzerland), 12(17). https://doi.org/10.3390/app12178884.

Guendouz, N., Rezzaz-Yazid, H., Laib, S., & Sadaoui, Z. (2022). Evaluation of the biogas potential of a lignocellulosic residue. Water Science and Technology, 84(8), 1827–1838. https://doi.org/10.2166/wst.2021.350.

Haryanto, A., Triyono, S., & Wicaksono, N. H. (2018). Effect of hydraulic retention time on biogas production from cow dung in a semi continuous anaerobic digester. International Journal of Renewable Energy Development, 7(2), 93–100. https://doi.org/10.14710/ijred.7.2.93-100.

Jekayinfa, S. O., Adebayo, A. O., Ogunkunle, O., Kareem, S. A., Olaleye, C., & Okoya, J. (2014). Design and Construction of a Metallic Bio-digester for The Production of Biogas From Cow Dung. LAUTECH Journal of Engineering and Technology, 8(2), 182–187.

Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Biogas Production and Applications in the Sustainable Energy Transition. Journal of Energy, 2022, 1–43. https://doi.org/10.1155/2022/8750221.

Kocer, A., Yilmaz, A., Ünvar, S., Koçer, A., & Aygün, B. (2018). Factors Affecting the Production of Biogas. International Journal of Scientific & Engineering Research, 9(5).

Maluegha, B. L., Ulaan, T. V. Y., & Umboh, M. K. (2018). Perancangan Digester Untuk Menghasilkan Biogas Dari Kotoran Ternak Babi Di Desa Rumoong Bawah Kabupaten Minahasa Selatan. Jurnal Tekno Mesin, 4(2), 118–122.

Meyer, G., Okudoh, V., & van Rensburg, E. (2022). A rumen based anaerobic digestion approach for lignocellulosic biomass using barley straw as feedstock. South African Journal of Chemical Engineering, 41, 98–104. https://doi.org/10.1016/j.sajce.2022.05.005.

Musa, M. A., & Idrus, S. (2020). Effect of hydraulic retention time on the treatment of real cattle slaughter house wastewater and biogas production from HUASB reactor. Water (Switzerland), 12(2). https://doi.org/10.3390/w12020490.

Nie, E., He, P., Zhang, H., Hao, L., Shao, L., & Lü, F. (2021). How does temperature regulate anaerobic digestion? Renewable and Sustainable Energy Reviews, 150, 1–11. https://doi.org/10.1016/j.rser.2021.111453.

Nindhia, T. G. T., Surata, I. W., Atmika, I. K. A., Negara, D. N. K. P., & Artana, I. P. G. (2015). Processing Carbon Rod from Waste of Zing-Carbon Battery for Biogas Desulfurizer. Journal of Clean Energy Technologies, 3(2), 119–122. https://doi.org/10.7763/jocet.2015.v3.179.

Nindhia, T. G. T., Surata, I. W., Swastika, I. D. G. P., & Widiana, P. (2016). Processing zinc from waste of used zinc-carbon battery with natrium chloride (NaCl) for biogas desulfurizer. Key Engineering Materials, 705, 368–373. https://doi.org/10.4028/www.scientific.net/KEM.705.368.

Nwankwo, C. S., Eze, J. I., & Okoyeuzu, C. (2017). Design and fabrication of 3.60 m3 household plastic bio digester loaded with kitchen waste and cow dung for biogas generation. Scientific Research and Essays, 12(14), 130–141. https://doi.org/10.5897/sre2017.6516.

Obileke, K. C., Onyeaka, H., & Nwokolo, N. (2021). Materials for the design and construction of household biogas digesters for biogas production: A review. International Journal of Energy Research, 45(3), 3761–3779. https://doi.org/10.1002/er.6120.

Pertiwiningrum, A., Wuri, M. A., Harto, A. W., Budiarto, R., & Gozan, M. (2019). Heating Value Enhancement by Biogas Purification Using Natural Zeolite and Rice Straw-Based Biochar. International Journal of GEOMATE, 16(55), 80–85. https://doi.org/10.21660/2019.55.4715.

Ramadhani, K., & Azis, Z. (2020). Efektivitas Model Pembelajaran Tipe Team Assisted Individualization (TAI) Terhadap Hasil Belajar Matematika Pada Siswa SMK PAB 2 Helvetia Medan T.P 2019/2020. Journal Mathematics Education Sigma [JMES], 1(1). https://doi.org/10.30596/jmes.v1i1.4025.

Ramadhani, L. I., Damayanti, S. I., Sudibyo, H., Azis, M. M., & Budhijanto, W. (2020). The impact of hydraulic retention time on the biomethane production from palm oil mill effluent (Pome) in twostage anaerobic fluidized bed reactor. International Journal of Renewable Energy Development, 10(1), 11–16. https://doi.org/10.14710/ijred.2021.20639.

Ramaraj, R., & Unpaprom, Y. (2016). Effect of temperature on the performance of biogas production from Duckweed Bioethanol production View project Feasibility of Biodiesel Production from Freshwater Macroalgae View project Effect of temperature on the performance of biogas production from D. In Chemistry Research Journal, 1(1).

Shi, X. S., Dong, J. J., Yu, J. H., Yin, H., Hu, S. M., Huang, S. X., & Yuan, X. Z. (2017). Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors. BioMed Research International, 2017. https://doi.org/10.1155/2017/2457805.

Soeprijanto, Mawaddah, J. I., Tauchid, R. W., Fatullah, A. R., & Agustina, S. (2019). Biogas Production from Canteen Wastes Using a Vertical Anaerobic Digester. In Prosiding Seminar Nasional Teknik Kimia “Kejuangan, (pp. 1–6).

Sunaryo. (2014). Rancang Bangun Reaktor Biogas Untk Pemanfaatan Limbah Kotoran Ternak Sapi di Desa Limbangan Kabupaten Banjarnegara. Jurnal PPKM UNSIQ, 1, 21–30.

Tian, G., Yang, B., Dong, M., Zhu, R., Yin, F., Zhao, X., … Cui, X. (2018). The effect of temperature on the microbial communities of peak biogas production in batch biogas reactors. Renewable Energy, 123, 15–25. https://doi.org/10.1016/j.renene.2018.01.119.

Trisakti, B., Irvan, M., Taslim, & Turmuzi, M. (2017). Effect of temperature on methanogenesis stage of two-stage anaerobic digestion of palm oil mill effluent (POME) into biogas. IOP Conference Series: Materials Science and Engineering, 206(1). https://doi.org/10.1088/1757-899X/206/1/012027.

Vanegas, C., & Bartlett, J. (2013). Anaerobic digestion of laminaria digitata: The effect of temperature on biogas production and composition. Waste and Biomass Valorization, 4(2), 509–515. https://doi.org/10.1007/s12649-012-9181-z.

Victor, R., Shajin, S., Roshni, R. M., & Asha, S. R. (2014). Augmentative Invention of Biogas from the Agronomic Wastes Using Facultative Anaerobic Bacterial Strain. International Journal of Current Microbiology and Allpied Sciences, 3(4), 556–564.

Wiranti, N. P. D., Suniasih, N. W., & Darsana, I. W. (2017). Pengaruh Model Pembelajaran Student Facilitator and Explaining Berbantuan Peta Konsep Terhadap Kompetensi Pengetahuan Ipa Siswa. Journal of Education Technology, 1(3), 204. https://doi.org/10.23887/jet.v1i3.12506.

Yasar, A., Nazir, S., Rasheed, R., Tabinda, A. B., & Nazar, M. (2017). Economic review of different designs of biogas plants at household level in Pakistan. Renewable and Sustainable Energy Reviews, 74, 221–229. https://doi.org/10.1016/j.rser.2017.01.128.

Downloads

Published

2023-04-26

Issue

Section

Articles