Klasifikasi Tingkat Kematangan Tandan Buah Segar Kelapa Sawit Menggunakan Pendekatan Deep Learning

Authors

  • Jefri Zulkarnain Universitas Amikom Yogyakarta, Yogyakarta, Indonesia
  • Kusrini Universitas Amikom Yogyakarta, Yogyakarta, Indonesia
  • Tonny Hidayat Universitas Amikom Yogyakarta, Yogyakarta, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v12i3.59140

Keywords:

Klasifikasi, Deep Learning, Tingkat Kematangan, Tandan Buah Segar Kelapa Sawit, Parameter

Abstract

Menilai kematangan Tandan Buah Segar (TBS) kelapa sawit sangat kompleks, kematangan TBS dilihat berdasarkan jumlah atau persentase dari buah yang terlepas dari TBS serta berdasarkan perubahan warna kulit luar TBS, dalam melakukan klasifikasi tingkat kematangan rentan terjadi kesalahan penilaian oleh manusia, kesalahan klasifikasi dapat terjadi oleh berbagai faktor. Untuk membantu kesalahan dalam klasifikasi, Deep learning diusulkan dalam melakukan mengklasifikasi tingkat kematangan. Tujuan dalam penelitian ini adalah menganalisis klasifikasi menggunakan Deep learning untuk memprediksi tingkat kematangan TBS kelapa sawit. Dalam penelitian ini diusulkan Deep learning dengan model ResNet50 untuk melakukan klasifikasi pada empat tingkat kematangan TBS: mentah, kurang matang, matang, dan terlalu matang. Penelitian ini akan melakukan eksperimen berdasarkan empat alokasi data, dua optimizer, dan enam learning rate serta melakukan augmentasi data. Penelitian menunjukan experimen model yang diusulkan menghasilkan kondisi terbaik alokasi data 90/10, optimizer adam, dan learning rate 0.0001 dengan precision 96%, recall 98%, F1 score 97%, dan accuracy 97%. Kesimpulan dari hasil penelitian model yang diusulkan berhasil mencapai akurasi 97%, namun demikian dalam melakukan klasifikasi tingkat kematangan membutuh data latih dengan ukuran besar untuk mendapatkan hasil kalsifikasi yang baik serta memperhatikan dataset dan metode yang digunakan.

References

Albakri, Z. M., Saufi, M., Kassim, M., Abdullah, A. F., & Harith, H. H. (2019). SCIENCE & TECHNOLOGY Analysis of Oil Palm Leaf Phyllotaxis towards Development of Models to Determine the Fresh Fruit Bunch (FFB) Maturity Stages, Yield and Site-Specific Harvesting. Pertanika J. Sci. & Technol, 27(2), 659–672.

Alfatni, M. S. M., Khairunniza-Bejo, S., Marhaban, M. H. B., Saaed, O. M. Ben, Mustapha, A., & Shariff, A. R. M. (2022). Towards a Real-Time Oil Palm Fruit Maturity System Using Supervised Classifiers Based on Feature Analysis. Agriculture, 12(9), 1461. https://doi.org/10.3390/agriculture12091461.

Ashari, S., Yanris, G. J., & Purnama, I. (2022). Oil Palm Fruit Ripeness Detection using Deep Learning. Sinkron, 7(2), 649–656. https://doi.org/10.33395/sinkron.v7i2.11420.

Behera, S. K., Rath, A. K., & Sethy, P. K. (2021). Maturity status classification of papaya fruits based on machine learning and transfer learning approach. Information Processing in Agriculture, 8(2), 244–250. https://doi.org/10.1016/j.inpa.2020.05.003.

Being, C. Y., Hashim, N., Maringgal, B., & Wondi, M. H. (2020). A review of non-destructive techniques applied for measuring quality of oil palm fresh fruit bunches. Journal of Agricultural and Food Engineering, 1(1), 1–6. https://doi.org/10.37865/jafe.2020.0002.

Dermawan, D., & Ashari, M. L. (2018). Studi Pemanfaatan Limbah Padat Industri Pengolahan Minyak Kelapa Sawit Spent Bleaching Earth sebagai Pengganti Agregat pada Campuran Beton. Jurnal Presipitasi, 15(1), 7 – 10. https://doi.org/10.14710/presipitasi.v15i1.7-10.

Fitra Maulana, F., & Rochmawati, N. (2019). Klasifikasi Citra Buah Menggunakan Convolutional Neural Network. Journal of Informatics and Computer Science 01(02), 104-108. https://doi.org/10.26740/jinacs.v1n02.p104-108.

Ginanjar, T. (2022a). ImageClassificationReducedClass Dataset. Roboflow Universe.

Ginanjar, T. (2022b). imclassification Dataset. Roboflow Universe.

Hardi, A. D., Joni, R., Syukri, S., & Aziz, H. (2020). Pembuatan Karbon Aktif dari Tandan Kosong Kelapa Sawit sebagai Elektroda Superkapasitor. Jurnal Fisika Unand, 9(4), 479–486. https://doi.org/10.25077/jfu.9.4.479-486.2020.

Herman, H., Susanto, A., Cenggoro, T. W., Suharjito, S., & Pardamean, B. (2020). Oil Palm Fruit Image Ripeness Classification with Computer Vision using Deep Learning and Visual Attention. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 12(2), 21–27. Retrieved from https://jtec.utem.edu.my/jtec/article/view/5543.

Himmah, E. F., Widyaningsih, M., & Maysaroh, M. (2020). Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB Dan HSV Menggunakan Metode K-Means Clustering. Jurnal Sains Dan Informatika, 6(2), 193–202. https://doi.org/10.34128/jsi.v6i2.242.

Junkwon, P., Takigawa, T., Okamoto, H., Hasegawa, H., Koike, M., Sakai, K., Siruntawineti, J., Chaeychomsri, W., Vanavichit, A., Tittinuchanon, P., & Bahalayodhin, B. (2009). Hyperspectral imaging for nondestructive determination of internal qualities for oil palm (Elaeis guineensis Jacq. var. tenera). In Agricultural Information Research (Vol. 18, Issue 3). https://doi.org/10.3173/air.18.130.

Khan, N., Kamaruddin, M. A., Sheikh, U. U., Yusup, Y., & Bakht, M. P. (2021). Oil palm and machine learning: Reviewing one decade of ideas, innovations, applications, and gaps. In Agriculture (Switzerland) (Vol. 11, Issue 9). MDPI. https://doi.org/10.3390/agriculture11090832.

Koval, S. I. (2018). Data preparation for neural network data analysis. Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2018, 2018-Janua, 898–901. https://doi.org/10.1109/EIConRus.2018.8317233.

Lai, J. W., Ramli, H. R., Ismail, L. I., & Hasan, W. Z. W. (2022). Real-Time Detection of Ripe Oil Palm Fresh Fruit Bunch Based on YOLOv4. IEEE Access, 10, 95763–95770. https://doi.org/10.1109/ACCESS.2022.3204762.

Lye Chew, C., Yong Ng, C., Onn Hong, W., Yeong Wu, T., Lee, Y.-Y., Ee Low, L., San Kong, P., & Seng Chan, E. (2021). Improving Sustainability of Palm Oil Production by Increasing Oil Extraction Rate: a Review. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-020-02555-1/Published.

Mansour, M. Y. M. A., D. Dambul, K., & Choo, K. Y. (2022). Object Detection Algorithms for Ripeness Classification of Oil Palm Fresh Fruit Bunch. International Journal of Technology, 13(6), 1326. https://doi.org/10.14716/ijtech.v13i6.5932.

New-workspace-0vwie. (2021). Sawit Dataset. Roboflow Universe.

Oktafanda, E. (2022). Klasifikasi Citra Kualitas Bibit dalam Meningkatkan Produksi Kelapa Sawit Menggunakan Metode Convolutional Neural Network (CNN). Jurnal Informatika Ekonomi Bisnis, 4(3), 72–77. https://doi.org/10.37034/infeb.v4i3.143.

Perez, L., & Wang, J. (2017). The Effectiveness of Data Augmentation in Image Classification using Deep Learning. ArXiv.

Prakosa, P., Pattiasina, S., & Winanda, W. (2023). Ekoteologi Gereja Terhadap Penanaman Kelapa Sawit Di Lahan Gambut. Jurnal Ilmiah Religiosity Entity Humanity (JIREH), 5(1), 73–82. https://doi.org/10.37364/jireh.v5i1.124.

Prasetyo, N. A., Pranowo, & Santoso, A. J. (2020). Automatic detection and calculation of palm oil fresh fruit bunches using faster R-CNN. International Journal of Applied Science and Engineering, 17(2), 121–134. https://doi.org/10.6703/IJASE.202005_17(2).121.

Raj, T., Hashim, F. H., Huddin, A. B., Hussain, A., Ibrahim, M. F., & Abdul, P. M. (2021). Classification of oil palm fresh fruit maturity based on carotene content from Raman spectra. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-97857-5.

Rifqi, M. (2021). Deteksi Kematangan Tandan Buah Segar (Tbs) Kelapa Sawit Berdasarkan Komposisi Warna Menggunakan Deep Learning. Jurnal Teknik Informatika, 14(2). https://doi.org/10.15408/jti.v14i2.23295.

Rochmawati, N., Hidayati, H. B., Yamasari, Y., Tjahyaningtijas, H. P. A., Yustanti, W., & Prihanto, A. (2021). Analisa Learning Rate dan Batch Size pada Klasifikasi Covid Menggunakan Deep Learning dengan Optimizer Adam. Journal of Information Engineering and Educational Technology, 5(2), 44–48. https://doi.org/10.26740/jieet.v5n2.p44-48.

Saleh, A. Y., & Liansitim, E. (2020). Palm oil classification using deep learning. Science in Information Technology Letters, 1(1), 1–8. https://doi.org/10.31763/sitech.v1i1.1.

Saranya, N., Srinivasan, K., & Kumar, S. K. P. (2022). Banana ripeness stage identification: a deep learning approach. Journal of Ambient Intelligence and Humanized Computing, 13(8), 4033–4039. https://doi.org/10.1007/s12652-021-03267-w.

Septiarini, A., Sunyoto, A., Hamdani, H., Kasim, A. A., Utaminingrum, F., & Hatta, H. R. (2021). Machine vision for the maturity classification of oil palm fresh fruit bunches based on color and texture features. Scientia Horticulturae, 286(April), 110245. https://doi.org/10.1016/j.scienta.2021.110245.

Sinambela, R., Mandang, T., Subrata, I. D. M., & Hermawan, W. (2020). Application of an inductive sensor system for identifying ripeness and forecasting harvest time of oil palm. Scientia Horticulturae, 265. https://doi.org/10.1016/j.scienta.2020.109231.

Suharjito, Elwirehardja, G. N., & Prayoga, J. S. (2021). Oil palm fresh fruit bunch ripeness classification on mobile devices using deep learning approaches. Computers and Electronics in Agriculture, 188. https://doi.org/10.1016/j.compag.2021.106359.

Suyanto. (2017). Data mining : untuk klasifikasi dan klasterisasi data. Penerbit Informatika .

Suyanto, Ramadhani, K. N., & Mandala, S. (2019). Deep learning : modernisasi machine learning untuk big data. Penerbit Informatika.

Wang, Y., Liu, H., & Zhou, Y. (2021). Development of a deep learning-based model for the entire production process of steam-assisted gravity drainage (SAGD). Fuel, 287. https://doi.org/https://doi.org/10.1016/j.fuel.2020.119565.

Wong, Z. Y., Chew, W. J., & Phang, S. K. (2020). Computer vision algorithm development for classification of palm fruit ripeness. AIP Conference Proceedings, 2233. https://doi.org/10.1063/5.0002188.

Yuen Teh, W., Jaya, S., & Ian Tan, M. K. (2021). Coloured Edge Maps for Oil Palm Ripeness Classification Priority Dynamics. The 32nd British Machine Vision Conference 22nd - 25th November 2021.

Downloads

Published

2024-01-22

How to Cite

Zulkarnain, J., Kusrini, & Hidayat, T. (2024). Klasifikasi Tingkat Kematangan Tandan Buah Segar Kelapa Sawit Menggunakan Pendekatan Deep Learning. JST (Jurnal Sains Dan Teknologi), 12(3), 748–758. https://doi.org/10.23887/jstundiksha.v12i3.59140

Issue

Section

Articles