Model Prediksi Kinerja Siswa Berdasarkan Data Log LMS Menggunakan Ensemble Machine Learning
DOI:
https://doi.org/10.23887/jstundiksha.v12i3.59816Keywords:
Model prediksi, bagging, boosting, votingAbstract
Institusi pendidikan saat ini menerapkan Learning Management System (LMS) sebagai sarana pembelajaran online. LMS dapat merekam sejumlah besar data perilaku siswa pada log LMS. Data perilaku ini dapat dikumpulkan dan digunakan untuk memprediksi kinerj belajar siswa. Sehingga, diperlukan analisis yang dapat mengubah sejumlah data yang tersimpan tersebut menjadi sebuah pengetahuan yang dapat meningkatkan kualitas pengajaran pada institusi pendidikan. Pada penelitian ini, mengusulkan model prediksi kinerja belajar siswa menggunakan ensemble machine learning berdasarkan ekstraksi ciri yang berhubungan dengan interaksi siswa pada LMS. Pemodelan dilakukan dengan menerapkan tiga jenis ensemble machine learning yaitu ; bagging, boosting dan voting. Hasil penelitian menunjukkan bahwa model ensemble machine learning yaitu bagging, boosting dan voting berhasil digunakan untuk memprediksi kinerja siswa dengan accuracy sebesar 81.25% dengan percision 0.810, recall 0.812 dan f-measure 0.809 yang diperoleh model bagging. Temuan pada penelitian ini adalah ensemble machine learning dapat diterapkan sebagai model prediks kinerja siswa berdasarkan data Log LMS. Institusi pendidikan baik sekolah maupun perguruan tinggi diharapkan dapat merancang sebuah kurikulum LMS untuk meningkatkan kualitas akademik institusi tersebut. Selain itu institusi pendidikan dapat memprediksi bagaimana kinerja siswanya, sehingga dapat meningkatkan prestasi akademik.
References
Adriansyah, I., Mahendra, M. D., Rasywir, E., & Pratama, Y. (2022). Perbandingan Metode Random Forest Classifier dan SVM Pada Klasifikasi Kemampuan Level Beradaptasi Pembelajaran Jarak Jauh Siswa. Bulletin of Informatics and Data Science, 1(2), 98–103. https://doi.org/10.61944/bids.v1i2.49.
Alamri, L. H., Almuslim, R. S., Alotibi, M. S., Alkadi, D. K., Ullah Khan, I., & Aslam, N. (2020). Predicting Student Academic Performance using Support Vector Machine and Random Forest. PervasiveHealth: Pervasive Computing Technologies for Healthcare, PartF16898, 100–107. https://doi.org/10.1145/3446590.3446607.
Almutairi, S., Shaiba, H., & Bezbradica, M. (2019). Predicting Students’ Academic Performance and Main Behavioral Features Using Data Mining Techniques. Communications in Computer and Information Science, 1097 CCIS, 245–259. https://doi.org/10.1007/978-3-030-36365-9_21.
Amrieh, E. A., Hamtini, T., & Aljarah, I. (2016). Mining Educational Data to Predict Student’s academic Performance using Ensemble Methods. International Journal of Database Theory and Application, 9(8), 119–136. https://doi.org/10.14257/ijdta.2016.9.8.13.
Ashraf, M., Zaman, M., & Ahmed, M. (2020). An Intelligent Prediction System for Educational Data Mining Based on Ensemble and Filtering approaches. Procedia Computer Science, 167(2019), 1471–1483. https://doi.org/10.1016/j.procs.2020.03.358.
Fahd, K., Miah, S. J., & Ahmed, K. (2021). Predicting student performance in a blended learning environment using learning management system interaction data. Applied Computing and Informatics. https://doi.org/10.1108/ACI-06-2021-0150.
Fernandes, E., Holanda, M., Victorino, R., & Erven, G. (2018). Educational data mining : Predictive analysis of Academic Performance of Public School Students in the Capital of Brazil. Journal of Business Research, 94, 335–343. https://doi.org/10.1016/j.jbusres.2018.02.012.
Hendrian, S. (2018). Algoritma Klasifikasi Data Mining Untuk Memprediksi Siswa Dalam Memperoleh Bantuan Dana Pendidikan. Faktor Exacta, 11(3). https://doi.org/10.30998/faktorexacta.v11i3.2777.
Hussain, S., Dahan, N. A., Ba-alwi, F. M., & Ribata, N. (2018). Educational Data Mining and Analysis of Students ’ Academic Performance Using WEKA. Indonesian Journal of Electrical Engineering and Computer Science, 9(2), 447–459. https://doi.org/10.11591/ijeecs.v9.i2.pp447-459.
Indahyanti, U., Azizah, N. L., & Setiawan, H. (2022). Educational Data Mining on Student Academic Performance Prediction: A Survey. Procedia of Social Sciences and Humanities, 3, 1442–1447. https://doi.org/10.21070/pssh.v3i.344.
Injadat, M., Moubayed, A., Nassif, A. B., & Shami, A. (2020). Systematic ensemble model selection approach for educational data mining. Knowledge-Based Systems, 200, 105992. https://doi.org/10.1016/j.knosys.2020.105992.
Jamhur, H. (2020). Pemodelan Prediksi Predikat Kelulusan Mahasiswa Menggunakan Fuzzy C-Means Berbasis Particle Swarm Optimization. TeknoIS: Jurnal Ilmiah Teknologi Informasi Dan Sains, 10(1), 13–24. https://doi.org/10.36350/jbs.v10i1.79.
Kadoic, N., & Oreski, D. (2018). Analysis of student behavior and success based on logs in Moodle. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2018 - Proceedings, 654–659. https://doi.org/10.23919/MIPRO.2018.8400123.
Kamal, P., & Ahuja, S. (2019). An ensemble-based model for prediction of academic performance of students in undergrad professional course. Journal of Engineering, Design and Technology, 17(4), 769–781. https://doi.org/10.1108/JEDT-11-2018-0204.
Nugroho, M. Y. A. (2020). Metode, media, dan problematika pembelajaran pai berbasis daring di tingkat madrasah aliyah. Paramurobi: Jurnal Pendidikan Agama Islam, 3(2), 1–14. https://doi.org/10.32699/paramurobi.v3i2.1573.
Prada, M. A., Dominguez, M., Vicario, J. L., Alves, P. A. V., Barbu, M., Podpora, M., Spagnolini, U., Pereira, M. J. V., & Vilanova, R. (2020). Educational Data Mining for Tutoring Support in Higher Education: A Web-Based Tool Case Study in Engineering Degrees. IEEE Access, 8, 212818–212836. https://doi.org/10.1109/ACCESS.2020.3040858.
Prasetyo, M. M., & Nurhidayah, N. (2021). The effect of internet use on improving student learning outcomes. Journal of Education Technology, 5(4), 511–519. https://doi.org/10.23887/jet.v5i4.40748.
Pratomo, I. W. P., & Wahanisa, R. (2021). Pemanfaatan Teknologi Learning Management System (LMS) di Unnes Masa Pandemi Covid-19: Utilization of Learning Management System (LMS) Technology at Unnes during the Covid-19 Pandemic. Seminar Nasional Hukum Universitas Negeri Semarang, 7(2), 547–560. https://doi.org/10.15294/snhunnes.v7i2.730.
Qazdar, A., Er-Raha, B., Cherkaoui, C., & Mammass, D. (2019). A machine learning algorithm framework for predicting students performance: A case study of baccalaureate students in Morocco. Education and Information Technologies, 24(6), 3577–3589. https://doi.org/10.1007/s10639-019-09946-8.
Rawat, K. S., & Malhan, I. V. (2019). A Hybrid Classification Method Based on Machine Learning Classifiers to Predict Performance in Educational Data Mining. In Lecture Notes in Networks and Systems (Vol. 46). Springer Singapore. https://doi.org/10.1007/978-981-13-1217-5_67.
Safitri, S. N., Setiadi, H., & Suryani, E. (2022). Educational Data Mining Using Cluster Analysis Methods and Decision. 5(158), 448–456. https://doi.org/10.29207/resti.v6i3.3935.
Saleem, F., Ullah, Z., Fakieh, B., & Kateb, F. (2021). Intelligent decision support system for predicting student’s e-learning performance using ensemble machine learning. In Mathematics (Vol. 9, Issue 17). https://doi.org/10.3390/math9172078.
Saputra, A. (2020). Pendidikan Dan Teknologi: Tantangan Dan Kesempatan. Indonesian Journal of Islamic Educational Management, 3(1), 21–33. https://doi.org/10.24014/ijiem.v3i1.9095.
Suhartono, E. (2017). Systematic Literatur Review (SLR): Metode, Manfaat, Dan Tantangan Learning Analytics Dengan Metode Data Mining di Dunia Pendidikan Tinggi. Jurnal Ilmiah INFOKAM, 13(1). https://doi.org/10.53845/infokam.v13i1.123.
Sutoyo, E., & Almaarif, A. (2020). Educational Data Mining untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritme Naïve Bayes Classifier. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(1), 95–101. https://doi.org/10.29207/RESTI.V4I1.1502.
Syahra, Y., Syahril, M., & Yusnidah, Y. (2019). Implementasi data mining dengan menggunakan algoritma fuzzy subtractive clustering dalam pengelompokan nilai untuk menentukan minat belajar siswa smp primbana Medan. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika Dan Komputer), 17(1), 54–63. https://doi.org/10.53513/jis.v17i1.113.
Syahril, M., Erwansyah, K., & Yetri, M. (2020). Penerapan Data Mining untuk menentukan pola penjualan peralatan sekolah pada brand wigglo dengan menggunakan algoritma apriori. Jurnal Teknologi Sistem Informasi Dan Sistem Komputer TGD, 3(1), 118–136. https://doi.org/10.53513/jsk.v3i1.202.
Tüfekci, A., & Yılmaz, E. A. G. (2020). Educational Data Mining. Engineering Education Trends in the Digital Era, 70–82. https://doi.org/10.4018/978-1-7998-2562-3.ch004.
Utami, D. Y., Nurlelah, E., & Hasan, F. N. (2021). Comparison of Neural Network Algorithms, Naive Bayes and Logistic Regression to predict diabetes. Journal of Informatics and Telecommunication Engineering, 5(1), 53–64. https://doi.org/10.31289/jite.v5i1.5201.
Yan, N., & Au, O. T.-S. (2019). Online learning behavior analysis based on machine learning. Asian Association of Open Universities Journal, 14(2), 97–106. https://doi.org/10.1108/aaouj-08-2019-0029.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mifta Ardianti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)