Pembelajaran Mesin Berbasis E-nose untuk Klasifikasi Daging pada Produk Sosis

Authors

  • Budi Sumanto Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Abelta Mika Setiarini Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Alfonzo Aruga Paripurna Barus Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Iman Sabarisman Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Muhammad Arrofiq Universitas Gadjah Mada, Yogyakarta, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v13i1.70307

Keywords:

E-Nose, Sosis, Pembelajaran Mesin, Ekstraksi Fitur, Halal

Abstract

Sosis adalah produk olahan daging yang digemari masyarakat namun terdapat permasalahan terkait identifikasi jenis daging yang digunakan dalam produk sosis. Hal ini menjadi penting, terutama bagi masyarakat muslim yang perlu memastikan kehalalan suatu produk sebelum dikonsumsi. Tujuan dari penelitian ini adalah menerapkan electronic nose (e-nose) yang tersusun dari enam sensor gas berbasis metal oxide semiconductor (MOS) dalam mendeteksi aroma dari sosis berbahan daging babi, sapi, dan ayam serta menganalisis sinyal respon sensor tersebut dengan metode pembelajaran mesin untuk mengklasifikasi jenis sosis berdasarkan jenis dagingnya. Percobaan dilakukan dengan setiap sampel jenis sosis seberat 2 gram dan pengukuran dilakukan sebanyak 100 kali perulangan untuk tiap sampel menggunakan e-snose. Hasil respon sensor diekstraksi menggunakan ciri maksimum, median, skewnes, kurtosis, standar deviasi, dan varians. Analisis yang dilakukan menggunakan principal component analysis (PCA) sebagai metode pengelompokan sedangkan metode klasifikasi menggunakan metode Linear discriminant analysis (LDA), k-nearest neighbor (k-NN), Quadratic Discriminant Analysis (QDA), Logistic Regresi (LR), dan Classification and Regression Trees (CART). Metode LDA memperoleh hasil yang paling akurat yaitu dengan akurasi internal mencapai 100% dan eksternal sebesar 98,3%. Pengelompokan dengan PCA mampu memisahkan sosis berdasarkan jenis dagingnya dan juga menunjukkan adanya tumpang tindih data antara sosis ayam dan sapi serta sosis babi dan sosis sapi yang mengindikasikan ketiga sampel memiliki kesamaan profil aroma yang hampir sama. Hasil ini menunjukkan bahwa e-nose dapat diterapkan sebagai instrumen untuk mendeteksi dan pengujian dalam mengidentifikasi produk makanan berupa olahan sosis berdasarkan jenis daging yang digunakan.

References

Bhavsar, P. P., Brahmbhatt, M. N., Nayak, J., Parmar, B. C., Chaudhary, J., Gida, H. K., & Paghdar, D. M. (2020). Identification of Species of Meat Origin using ATPase Gene Variability by the Polymerase Chain Reaction. International Journal of Current Microbiology and Applied Sciences, 9(6), 1197–1203. https://doi.org/10.20546/ijcmas.2020.906.149.

Bleicher, J., Ebner, E. E., & Bak, K. H. (2022). Formation and analysis of volatile and odor compounds in meat—a review. Molecules, 27(19), 6703. https://doi.org/10.3390/molecules27196703.

Brownlee, J. (2016). Machine learning mastery with R: Get started, build accurate models and work through projects step-by-step. Machine Learning Mastery.

Chen, J., Gu, J., Zhang, R., Mao, Y., & Tian, S. (2019). Freshness evaluation of three kinds of meats based on the electronic nose. Sensors, 19(3), 605. https://doi.org/10.3390/s19030605.

Chiş, L. M., & Vodnar, D. C. (2019). Detection of the species of origin for pork, chicken and beef in meat food products by real-time pcr. Safety, 5(4), 83. https://doi.org/10.3390/safety5040083.

Di Rosa, A. R., Leone, F., Cheli, F., & Chiofalo, V. (2017). Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment–A review. Journal of Food Engineering, 210, 62–75. https://doi.org/10.1016/j.jfoodeng.2017.04.024.

Domínguez, R., Purriños, L., Pérez-Santaescolástica, C., Pateiro, M., Barba, F. J., Tomasevic, I., & Lorenzo, J. M. (2019). Characterization of volatile compounds of dry-cured meat products using HS-SPME-GC/MS technique. Food Analytical Methods, 12, 1263–1284. https://doi.org/10.1007/s12161-019-01491-x.

Druml, B., Uhlig, S., Simon, K., Frost, K., Hettwer, K., Cichna-Markl, M., & Hochegger, R. (2021). Real-time pcr assay for the detection and quantification of roe deer to detect food adulteration—interlaboratory validation involving laboratories in austria, germany, and switzerland. Foods, 10(11), 2645. https://doi.org/10.3390/foods10112645.

Fathoni, M. A. (2020). Potret industri halal Indonesia: Peluang dan tantangan. Jurnal Ilmiah Ekonomi Islam, 6(3), 428–435. https://doi.org/10.29040/jiei.v6i3.1146.

Feng, C. H., Makino, Y., Oshita, S., & Martín, J. F. G. (2018). Hyperspectral imaging and multispectral imaging as the novel techniques for detecting defects in raw and processed meat products: Current state-of-the-art research advances. Food Control, 84, 165–176. https://doi.org/10.1016/j.foodcont.2017.07.013.

Górska-Horczyczak, E., Guzek, D., Molęda, Z., Wojtasik-Kalinowska, I., Brodowska, M., & Wierzbicka, A. (2016). Applications of electronic noses in meat analysis. Food Science and Technology, 36(3), 389–395. https://doi.org/10.1590/1678-457X.03615.

Gupta, S., Variyar, P. S., & Sharma, A. (2015). Application of mass spectrometry based electronic nose and chemometrics for fingerprinting radiation treatment. Radiation Physics and Chemistry, 106, 348–354. https://doi.org/10.1016/j.radphyschem.2014.09.002.

Hidayat, S. N., Triyana, K., Fauzan, I., Julian, T., Lelono, D., Yusuf, Y., & Peres, A. M. (2019). The electronic nose coupled with chemometric tools for discriminating the quality of black tea samples in situ. Chemosensors, 7(3), 29. https://doi.org/10.3390/chemosensors7030029.

Jia, W., van Ruth, S., Scollan, N., & Koidis, A. (2022). Hyperspectral imaging (hsi) for meat quality evaluation across the supply chain: current and future trends. Current Research in Food Science, 5, 1017–1027. https://doi.org/10.1016/j.crfs.2022.05.016.

Kaltenbrunner, M., Hochegger, R., & Cichna-Markl, M. (2018). Tetraplex real-time PCR assay for the simultaneous identification and quantification of roe deer, red deer, fallow deer and sika deer for deer meat authentication. Food Chemistry, 269, 486–494. https://doi.org/10.1016/j.foodchem.2018.07.023.

Kosowska, M., Majcher, M., & Fortuna, T. (2017). Volatile compounds in meat and meat products. Food Science and Technology, 37, 1–7. https://doi.org/10.1590/1678-457X.08416.

Lee, S. Y., Kim, M. J., Hong, Y., & Kim, H. Y. (2016). Development of a rapid on-site detection method for pork in processed meat products using real-time loop-mediated isothermal amplification. Food Control, 66, 53–61. https://doi.org/10.1016/j.foodcont.2016.01.041.

Li, H., Luo, D., Sun, Y., & GholamHosseini, H. (2019). Classification and identification of industrial gases based on electronic nose technology. Sensors, 19(22), 5033. https://doi.org/10.3390/s19225033.

Makanyeza, C., Svotwa, T. D., & Jaiyeoba, O. (2021). The effect of consumer rights awareness on attitude and purchase intention in the hotel industry: Moderating role of demographic characteristics. Cogent Business &Amp; Management, 8(1). https://doi.org/10.1080/23311975.2021.1898301.

Malikhah, M., Sarno, R., & Sabilla, S. I. (2021). Ensemble Learning for Optimizing Classification of Pork Adulteration in Beef Based on Electronic Nose Dataset. International Journal of Intelligent Engineering and Systems, 14(4), 44–55. https://doi.org/10.22266/ijies2021.0831.05.

Messina, C. M., Arena, R., Ficano, G., La Barbera, L., Morghese, M., & Santulli, A. (2021). Combination of freezing, low sodium brine, and cold smoking on the quality and shelf-life of sea bass (Dicentrarchus labrax L.) fillets as a strategy to innovate the market of aquaculture products. Animals, 11(1), 185. https://doi.org/10.3390/ani11010185.

Nespolo, N. M. (2021). The behavior of consumers and producers of food of animal origin and their impacts in one health. Frontiers in Veterinary Science, 8, 1–7. https://doi.org/10.3389/fvets.2021.641634.

Olivares, A., Navarro, J. L., & Flores, M. (2015). Characterization of volatile compounds responsible for the aroma in naturally fermented sausages by gas chromatography-olfactometry. Food Science and Technology International, 21(2), 110–123. https://doi.org/10.1177/1082013213515500.

Oscar, T. P. (2021). Development and validation of a neural network model for growth of Salmonella Newport from chicken on cucumber for use in risk assessment. Journal of Food Processing and Preservation, 45(10). https://doi.org/10.1111/jfpp.15819.

Peris, M., & Escuder-Gilabert, L. (2016). Electronic noses and tongues to assess food authenticity and adulteration. Trends in Food Science & Technology, 58, 40–54. https://doi.org/10.1016/j.tifs.2016.10.014.

Pulluri, K. K., & Kumar, V. N. (2022). Qualitative and quantitative detection of food adulteration using a smart E-Nose. Sensors, 22(20), 7789. https://doi.org/10.3390/s22207789.

Putri, L. A., Rahman, I., Puspita, M., Hidayat, S. N., Dharmawan, A. B., Rianjanu, A., & Wasisto, H. S. (2023). Rapid analysis of meat floss origin using a supervised machine learning-based electronic nose towards food authentication. Npj Science of Food, 7(1), 31. https://doi.org/10.1038/s41538-023-00205-2.

Raudienė, E., Gailius, D., Vinauskienė, R., Eisinaitė, V., Balčiūnas, G., Dobilienė, J., & Tamkutė, L. (2018). Rapid evaluation of fresh chicken meat quality by electronic nose. Czech Journal of Food Sciences, 36(5), 420–426. https://doi.org/10.17221/419/2017-CJFS.

Romano, A., Cuenca, M., Makhoul, S., Biasioli, F., Martinello, L., Fugatti, A., & Scampicchio, M. (2016). Comparison of e-Noses: The case study of honey. Italian Journal of Food Science, 28, 326–337. https://doi.org/10.14674/1120-1770%2Fijfs.v325.

Rux, G., Luca, A., & Mahajan, P. V. (2019). Changes in volatile organic compounds in the headspace of modified atmosphere packed and unpacked white sausages. Food Packaging and Shelf Life, 19, 167–173. https://doi.org/10.1016/j.fpsl.2018.12.010.

Sanaeifar, A., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., & Ahmadi, H. (2016). Application of MOS based electronic nose for the prediction of banana quality properties. Measurement, 82, 105–114. https://doi.org/10.1016/j.measurement.2015.12.041.

Santafe, G., Inza, I., & Lozano, J. A. (2015). Dealing with the evaluation of supervised classification algorithms. Artificial Intelligence Review, 44, 467–508. https://doi.org/10.1007/s10462-015-9433-y.

Song, Q., Chen, Y., Zhao, L., Ouyang, H., & Song, J. (2019). Monitoring of sausage products sold in sichuan province, china: a first comprehensive report on meat species’ authenticity determination. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-55612-x.

Song, S., Fan, L., Xu, X., Xu, R., Jia, Q., & Feng, T. (2019). Aroma Patterns Characterization of Braised Pork Obtained from a Novel Ingredient by Sensory-Guided Analysis and Gas-Chromatography-Olfactometry. Foods, 8(3), 87. https://doi.org/10.3390/foods8030087.

Sumanto, B., Humaira, S., Budiani, R. L., & Arrofiq, M. (2023). E-nose Application With Chemometrics for Monitoring Kombucha Tea Fermentation Process. JST (Jurnal Sains Dan Teknologi), 12(1), 39–47. https://doi.org/10.23887/jstundiksha.v12i1.50994.

Sumanto, B., Java, D. R., Wijaya, W., & Hendry, J. (2022). Seleksi Fitur Terhadap Performa Kinerja Sistem E-Nose untuk Klasifikasi Aroma Kopi Gayo. Matrik: Jurnal Manajemen, Teknik Informatika, Dan Rekayasa Komputer, 21(2), 429–438. https://doi.org/10.30812/matrik.v21i2.1495.

Sun, Y., Wang, J., & Cheng, S. (2017). Discrimination among tea plants either with different invasive severities or different invasive times using MOS electronic nose combined with a new feature extraction method. Computers and Electronics in Agriculture, 143, 293–301. https://doi.org/10.1016/j.compag.2017.11.007.

Sun, Y., Wang, J., Sun, L., Cheng, S., & Xiao, Q. (2019). Evaluation of E-nose data analyses for discrimination of tea plants with different damage types. Journal of Plant Diseases and Protection, 126(1), 29–38. https://doi.org/10.1007/s41348-018-0193-1.

Tazi, I., Triyana, K., Siswanta, D., Veloso, A. C., Peres, A. M., & Dias, L. G. (2018). Dairy products discrimination according to the milk type using an electrochemical multisensor device coupled with chemometric tools. Journal of Food Measurement and Characterization, 12, 2385–2393. https://doi.org/10.1007/s11694-018-9855-8.

Torezan, G. B., Kida, G. M., Bridi, A. M., Oba, A., da Costa Barbon, A. P. A., da Silva, C. A., & de Carvalho, R. H. (2020). Evaluation of effects of electronarcosis stunning on broiler chickens’ welfare and meat quality. Meat Technology, 61(2), 120–128. https://doi.org/10.18485/meattech.2020.61.2.2.

Tozlu, B. H., Şimşek, C., Aydemir, O., & Karavelioglu, Y. (2021). A High performance electronic nose system for the recognition of myocardial infarction and coronary artery diseases. Biomedical Signal Processing and Control, 64, 102247. https://doi.org/10.1016/j.bspc.2020.102247.

Wakhid, S., Sarno, R., & Sabilla, S. I. (2022). The effect of gas concentration on detection and classification of beef and pork mixtures using E-nose. Computers and Electronics in Agriculture, 195. https://doi.org/10.1016/j.compag.2022.106838.

Wang, J., Zhang, C., Chang, M., He, W., Lu, X., Fei, S., & Lu, G. (2021). Optimization of electronic nose sensor array for tea aroma detecting based on correlation coefficient and cluster analysis. Chemosensors, 9(9), 266. https://doi.org/10.3390/chemosensors9090266.

Wang, Y., Liu, L., Liu, X., Wang, Y., Yang, W., Zhao, W., Zhao, G., Cui, H., & Wen, J. (2024). Identification of characteristic aroma compounds in chicken meat and their metabolic mechanisms using gas chromatography–olfactometry, odor activity values, and metabolomics. Food Research International, 175, 113782. https://doi.org/10.1016/j.foodres.2023.113782.

Wang, Y., Song, H., Zhang, Y., Tang, J., & Yu, D. (2016). Determination of aroma compounds in pork broth produced by different processing methods. Flavour and Fragrance Journal, 31(4), 319–328. https://doi.org/10.1002/ffj.3320.

Wijaya, D. R., Sarno, R., & Zulaika, E. (2016). Sensor array optimization for mobile electronic nose: Wavelet transform and filter based feature selection approach. International Review on Computers and Software, 11(8), 659–671. https://doi.org/10.15866/irecos.v11i8.9425.

Wijaya, D. R., Sarno, R., Zulaika, E., & Sabila, S. I. (2017). Development of mobile electronic nose for beef quality monitoring. Procedia Computer Science, 124, 728–735. https://doi.org/10.1016/j.procs.2017.12.211.

Wu, N., Gu, S., Tao, N., Wang, X., & Ji, S. (2014). Characterization of important odorants in steamed male Chinese mitten crab (Eriocheir sinensis) using gas chromatography‐mass spectrometry‐olfactometr. Journal of Food Science, 79(7), C1250–C1259. https://doi.org/10.1111/1750-3841.12511.

Wu, N., Wang, X. C., Tao, N. P., & Ni, Y. Q. (2016). Odor profiles of hepatopancreas and gonad of Eriocheir sinensis by sensory analysis, electronic nose, and GC–MS analysis. Fisheries Science, 82, 537–547. https://doi.org/10.1007/s12562-016-0979-7.

Yang, L., Fu, S., Peng, X., Li, L., Song, T., & Li, L. (2014). Identification of pork in meat products using real-time loop-mediated isothermal amplification. Biotechnology & Biotechnological Equipment, 28(5), 882–888. https://doi.org/10.1080/13102818.2014.963789.

Zhu, X., Guo, W., Liu, D., & Kang, F. (2018). Determining the fat concentration of fresh raw cow milk using dielectric spectroscopy combined with chemometrics. Food Analytical Methods, 11, 1528–1537. https://doi.org/10.1007/s12161-017-1140-7.

Downloads

Published

2024-04-04

How to Cite

Sumanto, B., Abelta Mika Setiarini, Alfonzo Aruga Paripurna Barus, Iman Sabarisman, & Muhammad Arrofiq. (2024). Pembelajaran Mesin Berbasis E-nose untuk Klasifikasi Daging pada Produk Sosis. JST (Jurnal Sains Dan Teknologi), 13(1), 22–32. https://doi.org/10.23887/jstundiksha.v13i1.70307

Issue

Section

Articles