Transformasi Gas Rumah Kaca: Mengubah CO2 Menjadi Bahan Bernilai Tinggi Berupa Precipitated Calcium Carbonate (PCC)

Authors

  • Nuryoto Nuryoto Universitas Sultan Ageng Tirtayasa, Serang, Indonesia
  • Heri Heriyanto Universitas Sultan Ageng Tirtayasa, Serang, Indonesia
  • Leli Rahmawati Universitas Sultan Ageng Tirtayasa, Serang, Indonesia
  • Herliza Julvita Universitas Sultan Ageng Tirtayasa, Serang, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v13i2.79553

Keywords:

CO2, Air, Kalsit, Vaterit, Aragonit

Abstract

Gas CO2 dapat mengakibatkan pemanasan global dan pada kadar tertentu mempengaruhi kesehatan manusia. Untuk menjaga kadar CO2 di lingkungan dalam kondisi normal, penelitian ini mencoba mengonversi CO2 menjadi produk berupa precipitated calcium carbonate (PCC). Tujuan penelitian ini adalah menganalisa pengaruh kecepatan pengadukan, tekanan sistem reaksi, dan waktu interaksi pada pembuatan PCC menggunakan reaktor semi-batch. Pengumpulan data melibatkan 4 kali replikasi untuk setiap variabel, sehingga total subjek uji coba sebanyak 32.   Penelitian ini dilakukan dengan metode karbonasi yaitu dengan cara mengontakkan gas CO2 dengan Ca(OH)2 untuk menghasilkan PCC,  yang mana dilakukan pada  tekanan hidrostatis 980-9800 Pa, kecepatan 400 dan 500 rpm, laju alir CO2 2 liter/menit, dan waktu interaksi 15-60 menit. Guna mengetahui jumlah produk yang dihasilkan dilakukan analisis menggunakan analisis gravimetri, sedangkan jenis produk PCC dianalisis menggunakan alat instrumentasi. Hasil penelitian menunjukkan bahwa tekanan sistem reaksi, waktu interaksi, dan kecepatan pengadukan berpengaruh terhadap laju reaksi antara CO2 dan Ca(OH)2 serta produk PCC yang dihasilkan. Kondisi operasi optimum diperoleh pada tekanan 9800 Pa, kecepatan pengadukan 400 rpm, dan waktu interaksi 60 menit dengan massa PCC yang dihasilkan sebesar 7,99 gram, dengan produk PCC yang dihasilkan di dominasi oleh jenis kalsit. Hasil dari penelitian ini diharapkan dapat memberikan kontribusi dalam pengembangan teknologi yang lebih efisien untuk mengonversi CO₂ menjadi produk yang berguna, seperti PCC, yang memiliki aplikasi luas di berbagai sektor industri.

References

Abdullah, S. N., Hamzah, F., Husain, N. C., Veny, H., Rodhi, M. N. M., & Mohidem, N. A. (2023). Effect of Temperature and CO2 Flowrate on the Formation of CaCO3 in the Hydration Reaction of CO2 Catalyzed by Immobilized Carbonic anhydrase into PVDF Membrane. Chemical Engineering Transactions, 106(170), 1015–1020. https://doi.org/10.3303/CET23106170.

Arias, B., Criado, A., Y., P., B., & Abanades, J. C. (2022). Carbonation kinetics of Ca (OH) 2 under conditions of entrained reactors to capture CO2. Industrial & Engineering Chemistry Research, 61(9), 3272–3277. https://doi.org/10.1021/acs.iecr.1c04888. DOI: https://doi.org/10.1021/acs.iecr.1c04888

Cai, J., Zhao, Q., Hsu, W. Y., Choi, C., Liu, Y., Martirez, J. M. P., & Huang, Y. (2023). Highly selective electrochemical reduction of CO2 into methane on nanotwinned Cu. Journal of the American Chemical Society, 145(16), 9136–9143. https://doi.org/10.1021/jacs.3c00847. DOI: https://doi.org/10.1021/jacs.3c00847

Chen, Z., Wang, W., Forzieri, G., & Cescatti, A. (2024). Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-45957-x. DOI: https://doi.org/10.1038/s41467-024-45957-x

Cihanoglu, G., Karabiyik, M., Odabasi, I., & Balkose, D. (2022). Composition, Morphology, Optical, Thermal and Mechanical Properties of Yogurt Containers. European Journal of Technique, 12(2), 145–151. https://doi.org//10.36222/ejt.1054357. DOI: https://doi.org/10.36222/ejt.1054357

Conejo, A. N. (2020). Physical and mathematical modelling of mass transfer in ladles due to bottom gas stirring: A review. Processes, 8(7), 750. https://doi.org/10.3390/pr8070750. DOI: https://doi.org/10.3390/pr8070750

Dasmen, R. N., & Akbar, R. (2023). Air Quality Monitoring System And Air Neutralizer In Hotel Rooms With Notification Via Telegram. Tech-E, 6(2), 17–24. https://jurnal.buddhidharma.ac.id/index.php/te/article/view/1842.

Dhakshinamoorthy, A., Navalón, S., Primo, A., & García, H. (2024). Selective Gas‐Phase Hydrogenation of CO2 to Methanol Catalysed by Metal‐Organic Frameworks. Angewandte Chemie, 136(3), 202311241. https://doi.org/10.1002/ange.202311241. DOI: https://doi.org/10.1002/ange.202311241

Ghosh, A., Nag, D., Chatterjee, R., Singha, A., Dash, P. S., Choudhury, B., & Bhaumik, A. (2024). CO 2 to dimethyl ether (DME): structural and functional insights of hybrid catalysts. Catalysis Science & Technology. DOI: https://doi.org/10.1039/D3CY01497E

Hogan, J. A., Domke, G. M., Zhu, K., Johnson, D. J., & Lichstein, J. W. (2024). Climate change determines the sign of productivity trends in US forests. Proceedings of the National Academy of Sciences, 121(4), 2311132121. https://doi.org/10.1073/pnas.2311132121. DOI: https://doi.org/10.1073/pnas.2311132121

Hou, G., Wang, Q., Xu, D., Fan, H., Liu, K., Li, Y., & Ding, M. (2024). Dimethyl Carbonate Synthesis from CO2 over CeO2 with Electron‐enriched Lattice Oxygen Specises. Angewandte Chemie International Edition, e202402053. https://doi.org/10.1002/anie.202402053. DOI: https://doi.org/10.1002/ange.202402053

Hu, H., Chen, J., Zhou, F., Nie, M., Hou, D., Liu, H., & Liang, Y. (2024). Relative increases in CH4 and CO2 emissions from wetlands under global warming dependent on soil carbon substrates. Nature Geoscience, 1–6(17), 1. https://www.nature.com/articles/s41561-023-01345-6. DOI: https://doi.org/10.1038/s41561-023-01345-6

Junaedy, S., Dan, Z. A., & Idaryani. (2022). Rancang Bangun Alat Kontroling Kadar Udara Bersih Dan Gas Berbahaya Co, Co2 Dalam Ruangan Berbasis Mikrokontroler. Jurnal Teknologi Dan Komputer (JTEK, 2(02), 216–222. https://doi.org/10.56923/jtek.v2i02.104. DOI: https://doi.org/10.56923/jtek.v2i02.104

Khan, S., Das, P., Thaher, M., Abdulquadir, M., Faisal, M., Hawari, A. H., & Al-Jabri, H. (2024). Application note—A novel, low-cost pH-controlled solenoid-based CO2 dosing device for microalgal and cyanobacterial cultivation systems. Smart Agricultural Technology, 7, 100373. https://doi.org/10.1016/j.atech.2023.100373. DOI: https://doi.org/10.1016/j.atech.2023.100373

Khine, E. E., Koncz-Horvath, D., Kristaly, F., Ferenczi, T., Karacs, G., Baumli, P., & Kaptay, G. (2022). Synthesis and characterization of calcium oxide nanoparticles for CO2 capture. Journal of Nanoparticle Research, 24(7), 139. https://doi.org/10.1007/s11051-022-05518-z. DOI: https://doi.org/10.1007/s11051-022-05518-z

Kim, S., Lee, S. G., & Jeong, D. H. (2024). Direct Synthesis of Dimethyl Carbonate from CO2: From the Perspective of Dimethyl-Carbonate, A Promising Material for the Future. Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2024.02.010. DOI: https://doi.org/10.1016/j.cherd.2024.02.010

Koch, C. J., Suhail, Z., Goeppert, A., & Prakash, G. S. (2023). CO2 capture and direct air CO2 capture followed by integrated conversion to methane assisted by metal hydroxides and a Ru/Al2O3 catalyst. ChemCatChem, 15(23), 202300877. https://doi.org/10.1002/cctc.202300877. DOI: https://doi.org/10.1002/cctc.202300877

Küçükhüseyin, Ö. (2021). CO2 monitoring and indoor air quality. REHVA Eur. HVAC J, 58, 54–59.

Kuliyev, S., Tas, Y. E., & Selim Cogenli, M. (2023). Contol of CO2 Absorption by NaOH Solution Using pH, Conductivity, and Titration Measurement. Chemical Problems/Kimya Problemləri, 21(2). https://doi.org/10.32737/2221-8688-2023-2-123-131.

Lee, Y. G., Lee, H. U., Lee, J. M., Kim, N. Y., & Jeong, D. H. (2024). Design of Dimethyl Carbonate (DMC) Synthesis Process Using CO2, Techno-economic Analysis, and Life Cycle Assessment. Korean Journal of Chemical Engineering, 41(1), 1–17. https://orcid.org/0000-0002-4005-3153. DOI: https://doi.org/10.1007/s11814-024-00019-2

Legout, P., Lefebvre, G., Bonnin, M., Gimel, J. C., Benyahia, L., Gibaud, A., & Calvignac, B. (2022). Reactive precipitation of vaterite calcium carbonate microspheres in supercritical carbon dioxide-water dispersion by microfluidics. The Journal of Supercritical Fluids, 188, 105678. https://doi.org/10.1016/j.supflu.2022.105678. DOI: https://doi.org/10.1016/j.supflu.2022.105678

Leong, Y. K., & Chang, J. S. (2023). Waste stream valorization-based low-carbon bioeconomy utilizing algae as a biorefinery platform. Renewable and Sustainable Energy Reviews, 178, 113245. https://doi.org/10.1016/j.rser.2023.113245. DOI: https://doi.org/10.1016/j.rser.2023.113245

Ling, L. L., Guan, X., Liu, X., Lei, X. M., Lin, Z., & Jiang, H. L. (2024). Promoted hydrogenation of CO2 to methanol over single-atom Cu sites with Na+ decorated microenvironment. National Science Review, 11(6). https://doi.org/10.1093/nsr/nwae114. DOI: https://doi.org/10.1093/nsr/nwae114

Liotta, L. F., & Wu, H. (2024). CO2 Capture, Utilization and Storage: Catalysts Design. Catalysts, 14(1), 80. https://doi.org/10.3390/catal14010080. DOI: https://doi.org/10.3390/catal14010080

Livescu, A., Navar, R., Mangalindan, J. R., Mahnaz, F., Ge, Y., Shetty, M., & Yang, X. (2024). Catalysts for Clean Energy: A Review on Current Progress for the Catalyzed Recycling of CO2 into Dimethyl Ether. In Topics in Catalysis (pp. 1–22). https://doi.org/10.1007/s11244-024-01913-z. DOI: https://doi.org/10.1007/s11244-024-01913-z

Luo, X., Song, X., Cao, Y., & Bu, X. (2020). Investigation of calcium carbonate synthesized by steamed ammonia liquid waste without use of additives. The Royal Society of Chemistry, 10(13), 7976–7986. https://doi.org/10.1039/C9RA10460G. DOI: https://doi.org/10.1039/C9RA10460G

Ma, S., Huang, Y., Zhu, X., Xia, A., Zhu, X., & Liao, Q. (2024). Growth-based dynamic light transmission modeling and optimization in microalgal photobioreactors for high efficiency CO2 fixation. Renewable and Sustainable Energy Reviews, 197, 114414. https://doi.org/10.1016/j.rser.2024.114414. DOI: https://doi.org/10.1016/j.rser.2024.114414

Ma, Y., Zhang, X., Du, Z., Hou, H., & Zheng, Y. (2024). Research on Utilizable Calcium from Calcium Carbide Slag with Different Extractors and Its Effect on CO2 Mineralization. Materials, 17(5), 1068. https://doi.org/10.3390/ma17051068. DOI: https://doi.org/10.3390/ma17051068

Madhania, S., Ihsana, Y., Rizaldy, M. Z., Afdiwibowo, A., Kusdianto, K., & Winardi, S. (2020). Preparation of precipitated calcium carbonate from carbon mineralization of raw biogas with Ca (OH) 2 solution using bubble column contactor. AIP Conference Proceedings, 2219(1). https://doi.org/10.1063/5.0003060. DOI: https://doi.org/10.1063/5.0003060

Munawaroh, F., Ahied, M., & Muharrami, L. K. (2019). The effect of Ca (OH) 2 slurry concentration on precipitated CaCO3 product. AIP Conference Proceedings, 2202(1). https://doi.org/10.1016/j.fuel.2022.125259. DOI: https://doi.org/10.1063/1.5141630

Noor, S., Rehman, A., Iqbal, S., Iqbal, M., & Rehman, E. W. U. (2024). Novel Applications Of Precipitated Calcium Carbonate In Food, Pharmaceutical, And Cosmetic Industry. AND COSMETIC INDUSTRY. Journal of Population Therapeutics and Clinical Pharmacology, 31(1), 529–543. https://doi.org/10.53555/jptcp.v31i1.4039. DOI: https://doi.org/10.53555/jptcp.v31i1.4039

Nunes, L. J. (2023). The rising threat of atmospheric CO2: a review on the causes, impacts, and mitigation strategies. Environments, 10(4), 66. https://doi.org/10.3390/environments10040066. DOI: https://doi.org/10.3390/environments10040066

Nuryoto, N., Mas’ulunniah, N., Choerunnisa, A. S., & Suripno, S. (2021). Pemanfaatan Karbon Dioksida Untuk Sintesis Precipitated Calcium Carbonate (Pcc) Dengan Metode Karbonasi. Jurnal Integrasi Proses, 10(2), 90–95. https://doi.org/10.36055/jip.v10i2.12286. DOI: https://doi.org/10.36055/jip.v10i2.12286

Okeke-Ogbuafor, N., Gray, T., Kamara, S., Sesay, E., Dauda, A., Stead, S. M., & Ani, K. J. (2024). Climate-smart fisheries: CO2 emissions reduction and food security are complementary. Marine Policy, 159, 105926. https://doi.org/10.1016/j.marpol.2023.105926. DOI: https://doi.org/10.1016/j.marpol.2023.105926

Park, J., Choi, W. Y., Jang, K., Lee, S., Kim, E., Moulay, I., & Lee, D. (2024). Experimental And Integrated Computational Study On CCUS Technology Utilizing Desalinated Brine. https://doi.org/10.21203/rs.3.rs-3690519/v1. DOI: https://doi.org/10.21203/rs.3.rs-3690519/v1

Pusparizkita, Y. M., Schmahl, W. W., Ambarita, M., Kholid, H. N., Sadewa, A. Y., Ismail, R., & Bayuseno, A. P. (2023). Mineralizing CO2 and producing polymorphic calcium carbonates from bitumen-rock asphalt manufacturing solid residues. Cleaner Engineering and Technology, 12, 100602. https://doi.org/10.1016/j.clet.2023.100602. DOI: https://doi.org/10.1016/j.clet.2023.100602

Rezvi, H. U. A., Tahjib‐Ul‐Arif, M., Azim, M. A., Tumpa, T. A., Tipu, M. M. H., Najnine, F., & Brestič, M. (2023). Rice and food security: Climate change implications and the future prospects for nutritional security. Food and Energy Security, 12(1), 430. https://doi.org/10.1002/fes3.430. DOI: https://doi.org/10.1002/fes3.430

Rivera, R. M., & Gerven, T. (2020). Production of calcium carbonate with different morphology by simultaneous CO2 capture and mineralisation. Journal of CO2 Utilization, 41, 101241. https://doi.org/10.1016/j.jcou.2020.101241. DOI: https://doi.org/10.1016/j.jcou.2020.101241

Rizzetto, A., Piumetti, M., Pirone, R., Sartoretti, E., & Bensaid, S. (2024). Study of ceria-composite materials for high-temperature CO2 capture and their ruthenium functionalization for methane production. Catalysis Today, 429, 114478. https://doi.org/10.1016/j.cattod.2023.114478. DOI: https://doi.org/10.1016/j.cattod.2023.114478

Rodriguez-Navarro, C., Ilić, T., Ruiz-Agudo, E., & Elert, K. (2023). Carbonation mechanisms and kinetics of lime-based binders: An overview. Cement and Concrete Research, 173, 107301. https://doi.org/10.1016/j.cemconres.2023.107301. DOI: https://doi.org/10.1016/j.cemconres.2023.107301

Rojas-Buzo, S., Salusso, D., Jouve, A., Bracciotti, E., Signorile, M., & Bordiga, S. (2024). CO2 to dimethylcarbonate synthesis: Surface defects and oxygen vacancies engineering on MOF-derived CexZr1− xO2− y catalysts. Applied Catalysis B: Environment and Energy, 346(1), 123723. https://doi.org/10.1016/j.apcatb.2024.123723. DOI: https://doi.org/10.1016/j.apcatb.2024.123723

Rosseira, A. A., Hafizah, A. N., Fadzil, M. A., Faliq, M. B., Irfan, N. K., & Rohaya, O. (2023). Early CO2 capturing mortar by incorporating a new potential carbide lime waste under controlled CO2 curing. Journal of Physics: Conference Series, 2521(1), 12007. https://doi.org/1088/1742-6596/2521/1/012007. DOI: https://doi.org/10.1088/1742-6596/2521/1/012007

Sadig, K., Emre, T. Y., & Selim, C. M. (2023). Control Of Co2 Absorption By Naoh Solution Using Ph, Conductivity And Titration Measurements. Kimya Problemleri, 21(2), 123–131. https://cyberleninka.ru/article/n/control-of-co2-absorption-by-naoh-solution-using-ph-conductivity-and-titration-measurements. DOI: https://doi.org/10.32737/2221-8688-2023-2-123-131

Salleh, E. M., Othman, R., Mahim, Z., & Sabri, S. N. (2021). Effect of liquid feeding rate on carbonation of precipitated calcium carbonate via continuous method. Journal of Physics, 2080(1), 12017. https://doi.org/10.1088/1742-6596/2080/1/012017. DOI: https://doi.org/10.1088/1742-6596/2080/1/012017

Sari, E., Desmiarti, R., Arief, S., Rosadi, M. Y., Naldi, N., Hutagaol, H. A., & Kurniawan, E. (2023). Synthesis of precipitated calcium carbonate with the addition of aloe vera extract under different reaction temperatures. International Journal of Applied Science and Engineering, 20(1), 1–7. https://doi.org/10.6703/IJASE.202303_20(1).007. DOI: https://doi.org/10.6703/IJASE.202303_20(1).007

Slingo, J. M., & Slingo, M. E. (2024). The science of climate change and the effect of anaesthetic gas emissions. Anaesthesia, 79(3), 252–260. https://doi.org/10.1111/anae.16189. DOI: https://doi.org/10.1111/anae.16189

Sun, C., Xia, Y., Ye, X., Xu, W., Shi, H., Gao, X., & Li, J. (2024). Optimizing CO2 Hydrogenation to DME through Tailored Interfacial Interactions: Weakening Synergy in CuZnZr and Al-Modified SBA-15 Catalysts. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.3c03606. DOI: https://doi.org/10.1021/acs.iecr.3c03606

Valluri, S., Claremboux, V., & Kawatra, S. (2022). Opportunities and challenges in CO2 utilization. Journal of Environmental Sciences, 113, 322–344. https://doi.org/10.1016/j.jes.2021.05.043. DOI: https://doi.org/10.1016/j.jes.2021.05.043

Walerowski, M., Potter, M., Burke, E., Kyrimis, S., Armstrong, L. M., & Raja, R. (2024). Designing Bifunctional Catalysts for the One-pot Conversion of CO2 to Sustainable Marine Transportation Fuels. Catalysis Science & Technology. https://doi.org/10.1039/D4CY00020J. DOI: https://doi.org/10.1039/D4CY00020J

Wulandari, V., & Yohandri. (2023). Design and Construction of Air Quality Monitoring System using NodeMCU IoT-Based. Journal of Experimental and Applied Physics, 1(2). https://doi.org/10.24036/jeap.v1i2.23.

Zevenhoven, R., Legendre, D., Said, A., & Järvinen, M. (2019). Carbon dioxide dissolution and ammonia losses in bubble columns for precipitated calcium carbonate (PCC) production. Energy, 175, 1121–1129. https://doi.org/10.1016/j.energy.2019.03.112. DOI: https://doi.org/10.1016/j.energy.2019.03.112

Zimmerli, N. K., Rochlitz, L., Checchia, S., Müller, C. R., Copéret, C., & Abdala, P. M. (2024). Structure and role of a Ga-promoter in Ni-based catalysts for the selective hydrogenation of CO2 to Methanol. JACS Au, 4(1), 237–252. https://doi.org/10.1021/jacsau.3c00677. DOI: https://doi.org/10.1021/jacsau.3c00677

Downloads

Published

2024-07-25

How to Cite

Nuryoto, N., Heriyanto, H. ., Rahmawati, L. ., & Julvita, H. (2024). Transformasi Gas Rumah Kaca: Mengubah CO2 Menjadi Bahan Bernilai Tinggi Berupa Precipitated Calcium Carbonate (PCC). JST (Jurnal Sains Dan Teknologi), 13(2), 205–216. https://doi.org/10.23887/jstundiksha.v13i2.79553

Issue

Section

Articles