Effect of NaCl Activator Concentration on Iodine Adsorption of PET- based Activated Carbon

Authors

  • Fadilatur Rahmi Agus President University, Cikarang, Indonesia
  • Yosef Barita Sar Manik President University, Cikarang, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v13i2.81448

Keywords:

Activated Carbon, Plastic PET, NaCl, Iodine

Abstract

This study examines the use of NaCl as an activator in the production of activated carbon from Polyethylene terephthalate (PET) waste to overcome environmental problems due to the accumulation of plastic waste that is difficult to decompose. This study aims to examine the effect of NaCl concentration on the iodine adsorption capacity of activated carbon. This type of research is experimental research. The samples used were 15 samples of activated carbon. Data collection methods through laboratory experiments. Data analysis was performed by simple linear regression analysis. The results of the analysis showed that variations in NaCl concentration had a significant effect on iodine adsorption capacity, with an R² value of 0.868 indicating 86.8% of variations in adsorption capacity could be explained by NaCl concentration. A concentration of 1M was considered optimal in balancing effectiveness, production cost, and environmental impact, although higher concentrations resulted in better adsorption capacity. This study concludes that the utilization of PET waste for activated carbon production provides a sustainable solution to plastic pollution, reduces waste while producing high-value products for industrial applications, and contributes to the development of more environmentally friendly and economical activated carbon production methods.

References

Ahangar, F. A., Rashid, U., Ahmad, J., Tsubota, T., & Alsalme, A. (2021). Conversion of waste polyethylene terephthalate (Pet) polymer into activated carbon and its feasibility to produce green fuel. Polymers, 13(22). https://doi.org/10.3390/polym13223952. DOI: https://doi.org/10.3390/polym13223952

Aulia, A., Azizah, R., Sulistyorini, L., & Rizaldi, M. A. (2023). Literature Review: Dampak Mikroplastik Terhadap Lingkungan Pesisir, Biota Laut dan Potensi Risiko Kesehatan. Jurnal Kesehatan Lingkungan Indonesia, 22(3), 328–341. https://doi.org/10.14710/jkli.22.3.328-341. DOI: https://doi.org/10.14710/jkli.22.3.328-341

Babaremu, K. O., Okoya, S. A., Hughes, E., Tijani, B., Teidi, D., Akpan, A., Igwe, J., Karera, S., Oyinlola, M., & Akinlabi, E. T. (2022). Sustainable plastic waste management in a circular economy. Heliyon, 8(7), 9984. https://doi.org/10.1016/j.heliyon.2022.e09984. DOI: https://doi.org/10.1016/j.heliyon.2022.e09984

Cahyono, M. S., Haryono, S., & Mandala, W. W. (2021). Proses Pirolisis Untuk Mengkonversi Limbah Plastik Menjadi Bahan Bakar Minyak Menggunakan Penyaringan Adsorban (Arang dan Zeolit. Jurnal Offshore: Oil, Production Facilities and Renewable Energy, 5(2), 74. https://doi.org/10.30588/jo.v5i2.993. DOI: https://doi.org/10.30588/jo.v5i2.993

Devi, M., & Rawat, S. (2021). A comprehensive review of the pyrolysis process : from carbon nanomaterial synthesis to waste treatment. Oxford Academi, 1(1), 30. https://doi.org/10.1093/oxfmat/itab014 DOI: https://doi.org/10.1093/oxfmat/itab014

Dhahak, A., Hild, G., Rouaud, M., Mauviel, G., & Burkle-Vitzthum, V. (2019). Slow pyrolysis of polyethylene terephthalate: Online monitoring of gas production and quantitative analysis of waxy products. Journal of Analytical and Applied Pyrolysis, 142(1). https://doi.org/https://doi.org/10.1016/j.jaap.2019.104664. DOI: https://doi.org/10.1016/j.jaap.2019.104664

Dzigbor, A., & Chimphango, A. (2019). Production and optimization of NaCl-activated carbon from mango seed using response surface methodology. Biomass Conversion and Biorefinery, 1(1), 16–18. https://doi.org/10.1007/s13399-018-0361-3. DOI: https://doi.org/10.1007/s13399-018-0361-3

Falkenberg, L. J., Bellerby, R. G. J., Connell, S. D., Fleming, L. E., Maycock, B., Russell, B. D., Sullivan, F. J., & Dupont, S. (2020). Ocean acidification and human health. International Journal of Environmental Research and Public Health, 17(12), 1–20. https://doi.org/10.3390/ijerph17124563. DOI: https://doi.org/10.3390/ijerph17124563

Firmansyah, Y W, Fuadi, M. F. (2021). Keberadaan Plastik di Lingkungan, Bahaya terhadap Kesehatan Manusia, dan Upaya Mitigasi: Studi Literatur. Jurnal Serambi Engineering, 6(4), 2279–2285. https://doi.org/https://doi.org/10.32672/jse.v6i4.3471. DOI: https://doi.org/10.32672/jse.v6i4.3471

Ganjoo, R., Sharma, S., & Kumar, A. (2023). Activated Carbon : Fundamentals , Classification ,. In Activated Carbon: Progress and Applications. In Activated Carbon: Progress and Applications. https://doi.org/10.1039/BK9781839169861-00001. DOI: https://doi.org/10.1039/BK9781839169861-00001

Gunawan, S., Hasan, H., & Lubis, R. D. W. (2020). Pemanfaatan Adsorben dari Tongkol Jagung sebagai Karbon Aktif untuk Mengurangi Emisi Gas Buang Kendaraan Bermotor. Jurnal Rekayasa Material, Manufaktur Dan Energi, 3(1), 38–47. https://doi.org/10.30596/rmme.v3i1.4527. DOI: https://doi.org/10.30596/rmme.v3i1.4527

He, X., Chen, X., Wang, X., & Jiang, L. (2023). Optimization of activated carbon production from corn cob using response surface methodology. Frontiers in Environmental Science, 11(January), 1–11. https://doi.org/10.3389/fenvs.2023.1105408. DOI: https://doi.org/10.3389/fenvs.2023.1105408

Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 18(2), 393–415. https://doi.org/10.1007/s10311-019-00955-0. DOI: https://doi.org/10.1007/s10311-019-00955-0

Ilyas, M., Ahmad, W., & Khan, H. (2021). Utilization of activated carbon derived from waste plastic for decontamination of polycyclic aromatic hydrocarbons laden wastewater. Water Science and Technology, 84(3), 609–631. https://doi.org/10.2166/wst.2021.252. DOI: https://doi.org/10.2166/wst.2021.252

Karolinoerita, V., & Annisa, W. (2020). Salinisasi Lahan dan Permasalahannya di Indonesia. Jurnal Sumberdaya Lahan, 14(2), 91. https://doi.org/10.21082/jsdl.v14n2.2020.91-99. DOI: https://doi.org/10.21082/jsdl.v14n2.2020.91-99

Maerani, I. A., Maharani, R. K., Rohman, M. N., Eriyani, D., Nabila, F., & Wahyudha, A. (2023). Metode Edukasi dan Pelatihan Pengelolaan Sampah Plastik untuk Kerajinan di SDN Bedono 1 Sayung, Demak. Indonesian Journal of Community Services, 5(1), 114. https://doi.org/10.30659/ijocs.5.1.114-. DOI: https://doi.org/10.30659/ijocs.5.1.114-122

Manik, Y., Paramerta, N. M. A. P., Nadhifah, D. F., Cosaken, E. C., Saefurrahman, F., Stephanie, I., & Widi, S. S. (2023). Providing eco-literacy outreach to generation alpha using game-based Plastic recycling activity: Case study with foster children of an orphanage. Jurnal Masyarakat Mandiri, 7(5). https://doi.org/10.31764/jmm.v7i5.17325. DOI: https://doi.org/10.31764/jmm.v7i5.17325

Novia, T. (2021). Pengolahan Limbah Sampah Plastik Polytthylene. GRAVITASI Jurnal Pendidikan Fisika Dan Sains, 4(4), 33–41. https://doi.org/10.1016/j.clema.2024.100220. DOI: https://doi.org/10.33059/gravitasi.jpfs.v4i01.3481

Oko, S., Mustafa, M., Kurniawan, A., & Norfitria, L. (2021). Pembuatan Karbon Aktif dari Limbah Plastik PET (Polyethylene terephthalate) Menggunakan Aktivator KOH. METANA, 17(2), 61–68. https://doi.org/10.14710/metana.v17i2.40204. DOI: https://doi.org/10.14710/metana.v17i2.40204

Pilapitiya, P. G. N. T., & Ratnayake, A. S. (2024). The world of plastic waste: A review. Cleaner Materials, 11(August 2023), 100220. https://doi.org/10.1016/j.clema.2024.100220. DOI: https://doi.org/10.1016/j.clema.2024.100220

Radika, R., & Astuti, A. (2020). Pengaruh Variasi Konsentrasi NaCl sebagai Aktivator Karbon Aktif Kulit Singkong untuk Menurunkan Konsentrasi Logam Berat Air Sungai Batang Ombilin. Jurnal Fisika Unand, 9(2), 163–168. https://doi.org/10.25077/jfu.9.2.163-168.2020. DOI: https://doi.org/10.25077/jfu.9.2.163-168.2020

Schwarz, A. E., Ligthart, T. N., Godoi Bizarro, D., Wild, P., Vreugdenhil, B., & Harmelen, T. (2021). Plastic recycling in a circular economy; determining environmental performance through an LCA matrix model approach. Waste Management, 121(1), 331–342. https://doi.org/10.1016/j.wasman.2020.12.020. DOI: https://doi.org/10.1016/j.wasman.2020.12.020

Sharifian, S., & Asasian-Kolur, N. (2022). Polyethylene terephthalate (PET) waste to carbon materials: Theory, methods and applications. Journal of Analytical and Applied Pyrolysis, 163(1), 105496. https://doi.org/10.1016/j.jaap.2022.105496. DOI: https://doi.org/10.1016/j.jaap.2022.105496

Smeaton, C. (2021). Augmentation of global marine sedimentary carbon storage in the age of plastic. Limnology And Oceanography Letters, 6(3). https://doi.org/https://doi.org/10.1002/lol2.10187. DOI: https://doi.org/10.1002/lol2.10187

Subekti, R. (2023). A Circular Economy-Based Plastic Waste Management Policy in Indonesia (Compared to China and EU. Yustisia, 12(2), 168–184. https://doi.org/10.20961/yustisia.v12i2.72177. DOI: https://doi.org/10.20961/yustisia.v12i2.72177

Tarmidzi, F. M., Anindita, M., Putri, S., Andriani, A. N., & Alviany, R. (2021). Pengaruh Aktivator Asam Sulfat dan Natrium Klorida pada Karbon Aktif Batang Semu Pisang untuk Adsorpsi Fe. Jurnal Rekayasa Bahan Alam Dan Energi Berkelanjutan, 5(1), 17–21. https://doi.org/10.21776/ub.rbaet.2021.005.01.03. DOI: https://doi.org/10.21776/ub.rbaet.2021.005.01.03

Ukanwa, K. S., Patchigolla, K., Sakrabani, R., Anthony, E., & Mandavgane, S. (2019). A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass. MDPI Sustainability, 11(1), 1–35. https://doi.org/10.3390/su11226204. DOI: https://doi.org/10.3390/su11226204

Utomo, L. W., & Susi Arfiana, D. (2023). Pemanfaatan Limbah Plastik Daur Ulang dari Polietilen Tereftalat (PET) Sebagai Bahan Tambahan dalam Pembuatan Nanokomposit, Semen Mortar, dan Aspal. Jurnal Teknologi Lingkungan Lahan Basah, 11(1), 164–179. https://doi.org/10.26418/jtllb.v11i1.60812. DOI: https://doi.org/10.26418/jtllb.v11i1.60812

Wilson, T. J. B., Cooley, S. R., Tai, T. C., Cheung, W. W. L., & Tyedmers, P. H. (2020). Potential socioeconomic impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries. PLoS ONE, 15(1), 1–29. https://doi.org/10.1371/journal.pone.0226544. DOI: https://doi.org/10.1371/journal.pone.0226544

Yaqoob, L., Noor, T., & Iqbal, N. (2022). Conversion of Plastic Waste to Carbon-Based Compounds and Application in Energy Storage Devices. ACS Omega, 7(16), 13403–13435. https://doi.org/10.1021/acsomega.1c07291. DOI: https://doi.org/10.1021/acsomega.1c07291

Zepka, L. Q. (2019). Renewable Resources and Biorefineries. In Renewable Resources and Biorefineries. https://doi.org/10.5772/intechopen.75236. DOI: https://doi.org/10.5772/intechopen.75236

Zhao, X., Korey, M., Li, K., Copenhaver, K., Tekinalp, H., Celik, S., Kalaitzidou, K., Ruan, R., Ragauskas, A. J., & Ozcan, S. (2022). Plastic waste upcycling toward a circular economy. Chemical Engineering Journal, 428(1), 131928. https://doi.org/10.1016/j.cej.2021.131928. DOI: https://doi.org/10.1016/j.cej.2021.131928

Downloads

Published

2024-07-25

How to Cite

Agus, F. R., & Yosef Barita Sar Manik. (2024). Effect of NaCl Activator Concentration on Iodine Adsorption of PET- based Activated Carbon. JST (Jurnal Sains Dan Teknologi), 13(2), 250–257. https://doi.org/10.23887/jstundiksha.v13i2.81448

Issue

Section

Articles