Identifikasi Citra untuk Membedakan Uang Asli dan Palsu Menggunakan Algoritma Convolutional Neural Network (CNN)
DOI:
https://doi.org/10.23887/jstundiksha.v13i2.83416Kata Kunci:
Convolutional Neural Network, Keaslian uang, Identifikasi citra, Uang palsuAbstrak
Peredaran uang palsu di Indonesia terus meningkat seiring dengan kemajuan teknologi. Telah dibangun sistem pendeteksi keaslian uang dengan metode Convolutional Neural Network (CNN) untuk mencegah peredaran uang palsu dan menghentikan transaksi peredarannya. Metode CNN telah digunakan untuk mengklasifikasikan uang asli dan palsu berdasarkan gambar. Gambar uang asli mempunyai ciri khusus yang dapat membedakannya dengan uang palsu yaitu adanya watermark yang tidak terlihat oleh mata. Watermark merupakan gambar tersembunyi yang akan muncul pada mata uang rupiah asli jika dilihat. Eksperimen dilakukan dengan menggunakan dataset uang kertas yang mempunyai 2 kelas yaitu uang asli sebanyak 1.015 dan uang palsu sebanyak 1.126. Sebelum melakukan proses pembuatan model, data perlu diubah ukurannya menjadi 224x224 piksel untuk model GoogleNet, 256x256 untuk model AlexNet, dan 200x200 untuk model yang dimodifikasi. Model yang dimodifikasi dibuat untuk membandingkan hasil dari GoogleNet dan AlexNet, dengan mengurangi lapisan dan menyesuaikan parameter dengan data yang ada. Hasil terbaik diperoleh dengan parameter yang digunakan pada tahap uji yaitu nilai epoch 50 dan pixel 244x244, learning rate 0.001, dengan pembagian jumlah data latih dan data uji yaitu 70% dan 30%. Berdasarkan parameter tersebut didapatkan hasil dari training loss sebesar 4%, validation loss sebesar 69,9%, akurasi pelatihan sebesar 97,8% dan akurasi validasi sebesar 82,65%. Hasil tersebut merupakan hasil terbaik dari 3 arsitektur yang dibandingkan, dan dari berbagai jenis pengujian. Penambahan jumlah leyer dapat mrnyebabkan waktu pemrosesan menjadi lebih lama.
Referensi
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. , 8(53): 1-74. https://doi.org/10.1186/s40537-021-00444-8. DOI: https://doi.org/10.1186/s40537-021-00444-8
Andika, A. J., Kristian, Y., & Setiawan, E. I. (2023). Deteksi Komentar Cyberbullying Pada YouTube Dengan Metode Convolutional Neural Network - Long Short-Term Memory Network (CNN-LSTM). TEKNIKA: Jurnal Teknologi Informasi Dan Komunikasi, 12(3). https://doi.org/10.34148/teknika.v12i3.677. DOI: https://doi.org/10.34148/teknika.v12i3.677
Aprillia, D., Rohana, T., Mudzakir, T. Al, & Wahiddin, D. (2024). Deteksi Nominal Mata Uang Rupiah Menggunakan Metode Convolutional Neural Network dan Feedforward Neural Network. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(4). https://doi.org/10.30865/klik.v4i4.1711.
Atmojo, I. R. W. (2020). Implementasi Pembelajaran Berbasis Science, Technology, Engenering, Art And Mathematich (STEAM) Untuk Meningkatkan Kompetensi Paedagogik dan Professional Guru SD Melalui Metode Lesson Study. Jurnal Pendidikan Dasar, 8(2). https://doi.org/10.20961/jpd.v8i2.44214.
Balakrishnan, V., Zing, H. L., & Laporte, E. (2023). Covid-19 Infodemic–Understanding Content Features in Detecting Fake News using a Machine Learning Approach. Malaysian Journal of Computer Science, 36(1), 1–13. https://doi.org/10.22452/mjcs.vol36no1.1. DOI: https://doi.org/10.22452/mjcs.vol36no1.1
Chen, X., Zhang, B., & Gao, D. (2021). Bearing Fault Diagnosis Base on Multi-Scale CNN and LSTM Model. Journal of Intelligent Manufacturing, 32, 971-987. https://doi.org/10.1007/s10845-020-01600-2. DOI: https://doi.org/10.1007/s10845-020-01600-2
Dimas, H. S. (2021). Sosialisasi CIKUR (Ciri-Ciri Keaslian Rupiah ) Tahun Emisi 2016 untuk Menghambat Peredaran Uang Palsu dalam Penerimaan Dana Sumbangan di Masjid Al Irsyad Kertonegoro Kecamatan Jenggawah Kabupaten Jember. MUJTAMA: Jurnal Pengabdian Masyarakat, 1(1). https://doi.org/10.32528/mujtama.v1i1.5132.
Ferreira, J., & Mendonca, M, Dinic, P, S, R. (2021). Data Selection in Neural Networks. EEE Open Journal of Signal Processing, I(2), 533–534. https://doi.org/10.1109/OJSP.2021.3106197. DOI: https://doi.org/10.1109/OJSP.2021.3106197
Firat, H., Asker, M. E., Bayindir, M. I., & Hanbay, D. (2023). MHybrid 3D/2D Complete Inception Module and Convolutional Neural Network for Hyperspectral Remote Sensing Image Classification. Neural Processing Letters, 55. https://doi.org/10.1007/s11063-022-10929-z. DOI: https://doi.org/10.1007/s11063-022-10929-z
Haider, I., Yang, H. J., Lee, G. S., & Kim, S. H. (2023). Robust Human Face Emotion Classification using Triplet-Loss-Based Deep CNN Features and SVM. Sensors, 23(10), 1–19. https://doi.org/10.3390/s23104770. DOI: https://doi.org/10.3390/s23104770
Hamidah, W., Hasbullah, N, A, P., Irawan, T, S, B., & Kaswar, A, B. (2022). Deteksi Nominal Uang Kertas Menggunakan OCR (Optical Character Recognition). Jurnal Ilmu Komputer Dan Teknologi Informasi, 7(2), 72–76. https://doi.org/10.36805/technoxplore.v7i2.2123. DOI: https://doi.org/10.36805/technoxplore.v7i2.2123
Han, D., Liu, Q., & Fan, W. (2018). A new image classification method using CNN transfer learning and web data augmentation. Expert Systems with Applications, 95, 43–56. https://doi.org/10.1016/j.eswa.2017.11.028. DOI: https://doi.org/10.1016/j.eswa.2017.11.028
Hassan, N., Ahmad, T., Mahat, N. A., Maarof, H., & K., H. F. (2022). Counterfeit Fifty Ringgit Malaysian Banknotes Authentication using Novel Graph-Based Chemometrics Method. ,. Scientific Report, 5(4826), 1–14. https://doi.org/10.1038/s41598-022-08821-w. DOI: https://doi.org/10.1038/s41598-022-08821-w
Horst, F. V. D., Snell, J., & Theeuwes, J. (2021). Enhancing Banknote Authentication by Guiding Attention to Security Features and Manipulating Prevalence Expectancy. Cognitive Research: Principles and Implications, 6(73), 1–10. https://doi.org/10.1186/s41235-021-00341-x. DOI: https://doi.org/10.1186/s41235-021-00341-x
Ibrahim, M. M., Rahmadewi, R., & Nurpulaela, L. (2023). Pendeteksian Nominal Uang Pada Gambar Menggunakan Convolutional Neural Network: Integrasi Metode Pra-Pemrosesan Citra Dan Klasifikasi Berbasis CNN. Jurnal Teknik Informatika, 7(2). https://doi.org/10.36040/jati.v7i2.6863. DOI: https://doi.org/10.36040/jati.v7i2.6863
Irfansyah, D., Mustikasari, M., & Suroso, A. (2021). Arsitektur Convolutional Neural Network (CNN) Alexnet untuk Klasifikasi Hama pada Citra Daun Tanaman Kopi. Jurnal Informatika: Jurnal Pengembangan IT, 6(2), 87-92. https://doi.org/10.30591/jpit.v6i2.2802. DOI: https://doi.org/10.30591/jpit.v6i2.2802
Jeczmionek, E., & Kowalski, P, A. (2021). Flattening Layer Pruning in Convolutional Neural Networks. Symmetry, 13(7), 1–13. https://doi.org/10.3390/sym13071147. DOI: https://doi.org/10.3390/sym13071147
Kaya, E., Yasar, A., & Saritas, I. (2016). Banknote Classification using Artificial Neural Network Approach. International Journal of Intelligent Systems and Applications in Engineering, 4(1), 16-19. https://ijisae.org/index.php/IJISAE/article/view/421. DOI: https://doi.org/10.18201/ijisae.55250
Makundan, A., Tsao, Y, M., Cheng, W, M., Lin, F, C., & Wang, H, C. (2023). Automatic Counterfeit Currency Detection using a Novel Snapshot Hyperspectral Imaging Algorithm. Sensors, 23(4), 1–14. https://doi.org/10.3390/s23042026. DOI: https://doi.org/10.3390/s23042026
Miladiah., Umar, R., & Riadi, I. (2019). Implementasi Local Binary Pattern untuk Deteksi Keaslian Mata Uang Rupiah. Jurnal Edukasi Dan Penelitian Informatika, 5(2), 197–201. https://doi.org/10.26418/jp.v5i2.32721. DOI: https://doi.org/10.26418/jp.v5i2.32721
Pratama, A, R., & Cobantoro, A, F. (2023). Klasifikasi Citra Pneumonia Menggunakan Arsitektur Convolutional Neural Network (CNN). Jurnal Ilmiah NERO, 8(2), 133–144. https://doi.org/10.21107/nero.v8i2.18992.
Pratama, A, R., Mustajib, M., & Nugroho, A. (2020). Deteksi Citra Uang Kertas dengan Fitur RGB Menggunakan K-Nearest Neighbor. Jurnal Eksplora Informatika, 9(2), 163-172. https://doi.org/10.30864/eksplora.v9i2.336. DOI: https://doi.org/10.30864/eksplora.v9i2.336
Sadewa, B. A., & Yamasari, Y. (2024). Implementasi Deep Transfer Learning untuk Klasifikasi Nominal Uang Kertas Rupiah. JINACS (Journal of Informatics and Computer Science), 5(4), 543–551. https://doi.org/10.26740/jinacs.v5n04.p543-551. DOI: https://doi.org/10.26740/jinacs.v5n04.p543-551
Saputra, R, A., Nangi, J., Ningrum, I, P., Almaliki, M, F., & Pratama, L, R, A. (2022). Deteksi Uang Palsu Rupiah dengan Menggunakan Metode Deteksi Tepi Laplacian of Gaussian (LoG) dan Algoritma K-Means Clustering. Jurnal Buana Informatika, 13(2), 85-92. https://doi.org/10.24002/jbi.v13i02.5448. DOI: https://doi.org/10.24002/jbi.v13i02.5448
Singh, I., Goyal, G., & Chandel, A. (2022). AlexNet Architecture Based Convolutional Neural Network for Toxic Comments Classification. J. of King Saud Univ. Comp. and Inf. Sci, 34(9), 7547-7558. https://doi.org/10.1016/j.jksuci.2022.06.007. DOI: https://doi.org/10.1016/j.jksuci.2022.06.007
Siregar, A. S., & Ishaq. (2023). Analisis Hukum Positif dan Hukum Pidana Islam terhadap Tindak Pidana dalam Membelanjakan Uang. JRTI (Jurnal Riset Tindakan Manusia), 8(3). https://doi.org/10.29210/30033377000. DOI: https://doi.org/10.61069/juri.v3i2.93
Soeharto, M., Hasan, M. J., Susanto, A. R., & Fahrezi, D. A. (2024). Mengklasifikasi Mata Uang Lima Ribu Rupiah dan Dua Ribu Rupiah dengan Menggunakan Algoritma CNN. Jurnal Teknik Informatika, Sains Dan Ilmu Komunikasi, 2(3). https://doi.org/10.59841/saber.v2i3.1407. DOI: https://doi.org/10.59841/saber.v2i3.1407
Taye, M. M. (2023). Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions. Computation, 11(3), 1–23. https://doi.org/10.3390/computation11030052. DOI: https://doi.org/10.3390/computation11030052
Wardani, K. D. K. A., Jayanti, K. I. D., Gorda, A. A., & Supriyadinata, N. E. (2024). Upaya Penanggulangan Peredaran Upal Di Kota Denpasar Melalui Edukasi Cikur (Ciri - Ciri Keaslian Uang Rupiah). Diseminasi: Jurnal Pengabdian Kepada Masyarakat, 6(2). https://doi.org/10.33830/diseminasiabdimas.v6i2.6286. DOI: https://doi.org/10.33830/diseminasiabdimas.v6i2.6286
Wong, Y. J. (2020). Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) pee. Environmental Monitoring and Assessment, 192(7). https://doi.org/10.1007/s10661-020-08268-4. DOI: https://doi.org/10.1007/s10661-020-08268-4
Yamashita, R., M., N., G., D. R. K., & Togashi, K. (2018). Convolutional Neural Networks: An Overview and Application in Radiology. Insights into Imaging, 9, 611–629. https://doi.org/10.1007/s13244-018-0639-9. DOI: https://doi.org/10.1007/s13244-018-0639-9
Zafar, A., Aamir, M., Nawi, N. M., Arshad, A., Riaz, S., Alruban, A., Dutta, A. K., & Almotairi, S. (2022). P A Comparison of Pooling Methods for Convolutional Neural Networks. Applied Sciences, 12(17), 1–21. https://doi.org/10.3390/app12178643. DOI: https://doi.org/10.3390/app12178643
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 teguh negara; Prihastuti Harsani

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)