The Effect of Battery Settings and Fan Parameters on the Performance of the Lithium-Ion Battery Thermal Management System in a Circular Configuration

Authors

  • Muhammad Luthfi Mechanical Engineering, Engineering Department, Politeknik Negeri Indramayu https://orcid.org/0000-0003-2544-7151
  • Muhamad Ghozali Politeknik Negeri Indramayu
  • Yudhy Kurniawan Refrigeration and Air Conditioning Engineering, Engineering Department, Politeknik Negeri Indramayu

DOI:

https://doi.org/10.23887/jstundiksha.v13i3.84849

Keywords:

Lithium Ion, BTMS, Circular, Air Convection

Abstract

This study examines the performance of a thermal management system for 18650 lithium-ion batteries using a circular placement configuration and a forward-curved fan. Experiments were conducted with variations in fan speed, the number of fan blades, and battery positioning (aligned or zigzag) to observe their effects on temperature and temperature distribution during the battery discharge process. The results showed that increasing fan speed significantly reduced battery temperature to around 30-33°C and improved temperature distribution uniformity with a standard deviation ranging from 0.5 to 1.21°C. Meanwhile, variations in the number of fan blades and battery positioning had an insignificant impact on temperature reduction but did influence temperature distribution uniformity, with the lowest standard deviation of 0.5-0.6°C observed in the three-blade variation. The zigzag positioning provided a more uniform temperature distribution compared to the aligned positioning, with a standard deviation of 0.51-0.97°C

References

Ardhyanti, N., Salim, A. T. A., & Apriyanto, R. A. N. (2020). Analysis Of A Cylindrical Li-Ion Battery Cooling System Using The Computational Fluid Dynamics (Cfd) Method. Jmpm (Journal Of Materials And Manufacturing Processes, 7(2), 10 18196 7 2 19334. Https://Journal.Umy.Ac.Id/Index.Php/Jmpm/Article/View/19334.

Çengel, Y. A., & Ghajar, A. J. (2019). Heat And Mass Transfer: Basics & Applications. Mcgraw-Hill Education. Https://Books.Google.Co.Id/Books?Id=6kmezqeacaaj.

Chen, K., Chen, Y., Li, Z., Yuan, F., & Wang, S. (2020). Battery Cell Spacing Design In Parallel Air-Cooled Battery Thermal Management Systems. International Journal Of Heat And Mass Transfer, 127(3), 393–401. Https://Doi.Org/10.1016/J.Ijheatmasstransfer.2018.06.131. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.131

Fan, Y., Bao, Y., Ling, C., Chu, Y., Tan, X., & Yang, S. (2020). Experimental Study Of The Thermal Management Performance Of Air Coolers For High Energy Density Cylindrical Lithium-Ion Batteries. Applied Thermal Engineering, 155(4), 96–109. Https://Doi.Org/10.1016/J.Appltermaleng.2019.03.157. DOI: https://doi.org/10.1016/j.applthermaleng.2019.03.157

Forsberg, C. H. (2018). Chapter 7 - Natural Convection (Free (C.H.B.T.-H.T.P. & A. Forsberg (Eds.)). Academic Press. Https://Doi.Org/10.1016/B978-0-12-802296-2.00007-X. DOI: https://doi.org/10.1016/B978-0-12-802296-2.00007-X

Kashyap, P., Panda, B., Gao, L., & Garg, A. (2020). Optimization Of A Staggered Battery Thermal Management System Design Using An Integrated Approach Of Physics-Based Simulation And Evolutionary Algorithms. Journal Of Energy Storage, 79(3), 110229. Https://Doi.Org/10.1016/J.Est.2023.110229. DOI: https://doi.org/10.1016/j.est.2023.110229

Kim, K.-Y., & Seo, S.-J. (2019). Optimization Of Front Curved Blade Centrifugal Fan Shape With Navier-Stokes Analysis. Journal Of Fluid Engineering, 126(5), 735–742. Https://Doi.Org/10.1115/1.1792256. DOI: https://doi.org/10.1115/1.1792256

Kirad, K., & Chaudhari, M. (2020). Cell Spacing Design In Lithium-Ion Battery Modules For Improved Cooling Performance Of Battery Thermal Management Systems. Resource Journal, 481(3), 48. Https://Doi.Org/10.1016/J.Jpowsour.2020.229016. DOI: https://doi.org/10.1016/j.jpowsour.2020.229016

Li, S., Zhang, C., Zhao, Y., Offer, G. J., & Marinescu, M. (2020). Effect Of Thermal Gradients On Inhomogeneous Degradation Of Lithium-Ion Batteries. Communication Engineering, 2(1), 74. Https://Doi.Org/10.1038/S44172-023-00124-W. DOI: https://doi.org/10.1038/s44172-023-00124-w

Li, W., Zhou, Y., Zhang, H., & Tang, X. (2021). Review Of Battery Thermal Management For New Energy Vehicles (P. 38). Https://Doi.Org/10.3390/En16134845. DOI: https://doi.org/10.3390/en16134845

Liang, Z., & Wada, M. E. (2021). Development Of Cleaning Systems For Combine Harvesters: A Review. Biosystems Engineering, 236(4), 79–102. Https://Doi.Org/10.1016/J.Biosystemseng.2023.10.018 DOI: https://doi.org/10.1016/j.biosystemseng.2023.10.018

Lv, S., Wang, X., Lu, W., Zhang, J., & Ni, H. (2020). Effect Of Temperature On Lithium Ion Battery Capacity With Different Anodes (P. 47). Https://Doi.Org/10.3390/En15010060. DOI: https://doi.org/10.3390/en15010060

Mahek, M. K., Alkhedher, M., Ghazal, M., Abdelkareem, M. A., Ramadan, M., & Olabi, A.-G. (2020). Effect Of Control Volume Outlet Variations On Axial Air Cooling Of Lithium-Ion Batteries. International Journal Of Thermofluids, 19(4), 100373. Https://Doi.Org/10.1016/J.Ijft.2023.100373. DOI: https://doi.org/10.1016/j.ijft.2023.100373

Marcos, D., Garmendia, M., Crego, J., & Cortajarena, J. A. (2020). Functional Safety Bms Design Methodology For Automotive Lithium-Based Batteries (P. 39). Https://Doi.Org/10.3390/En14216942. DOI: https://doi.org/10.3390/en14216942

Moosavi, A., Ljung, A.-L., & Lundström, T. S. (2019). A Study Of The Influence Of Cell Spacing In A Large-Scale Air-Cooled Battery Thermal Management System Using A New Modeling Approach. Journal Of Energy Storage, 72(3), 68. Https://Doi.Org/10.1016/J.Est.2023.108418. DOI: https://doi.org/10.1016/j.est.2023.108418

Morali, U. (2020). Effect Of Convective Heat Transfer Coefficient On The Thermal Behavior Of Lithium-Ion Cells: A Numerical Study. Turkish People. J. Chemistry, 48(1), 128–136. Https://Doi.Org/10.55730/1300-0527.3645. DOI: https://doi.org/10.55730/1300-0527.3645

Naik, I., & Nandgaonkar, M. (2021). Overview Of Modeling Approaches And Methodologies For Lithium-Ion Battery Thermal Management Systems In Bt Electric Vehicles - Advances In Materials And Mechanical Engineering (C. Pandey, V. Goyat, & S. Goel (Eds.); Pp. 75–109). DOI: https://doi.org/10.1007/978-981-16-0673-1_8

Patel, J. R., & Rathod, M. K. (2020). Recent Developments In Passive And Hybrid Thermal Management Techniques In Lithium-Ion Batteries. Resource Journal, 480(7), 228820. Https://Doi.Org/10.1016/J.Jpowsour.2020.228820. DOI: https://doi.org/10.1016/j.jpowsour.2020.228820

Ramadass, P., Haran, B., White, R., & Popov, B. N. (2020). Fading Capacity Of Sony 18650 Cells Cycled At High Temperatures: Part I. Cycling Performance. Resource Journal, 112(2), 606–613. Https://Doi.Org/10.1016/S0378-7753(02)00474-3. DOI: https://doi.org/10.1016/S0378-7753(02)00474-3

Saw, L. H., Poon, H. M., Thiam, H. S., Cai, Z., Chong, W. T., Pambudi, N. A., & King, Y. J. (2019). New Thermal Management System That Uses Fog Cooling For The Lithium-Ion Battery Pack. Applied Energy, 223(3), 146–158. Https://Doi.Org/10.1016/J.Apenergy.2018.04.042. DOI: https://doi.org/10.1016/j.apenergy.2018.04.042

See, K. W., Wang, G., Zhang, Y., Wang, Y., Meng, L., Gu, X., Zhang, N., Lim, K. C., Zhao, L., & Xie, B. (2019). Critical Review And Functional Safety Of Battery Management Systems For Large-Scale Lithium-Ion Battery Pack Technology. International Journal Of Coal Science & Technology, 9(1), 36. Https://Doi.Org/10.1007/S40789-022-00494-0. DOI: https://doi.org/10.1007/s40789-022-00494-0

Shahid, S., & Agelin-Chaab, M. (2020). Development And Analysis Of Techniques To Improve Air Cooling And Temperature Uniformity In Battery Packs For Cylindrical Batteries. Advances In Thermal Science And Engineering, 5(8), 351–363. Https://Doi.Org/10.1016/J.Tsep.2018.01.003. DOI: https://doi.org/10.1016/j.tsep.2018.01.003

Shahjalal, M., Shams, T., Islam, M. E., Alam, W., Modak, M., Hossain, S. B., Ramadesigan, V., Ahmed, M. R., Ahmed, H., & Iqbal, A. (2020). Overview Of Thermal Management For Li-Ion Batteries: Prospects, Challenges And Problems. Journal Of Energy Storage, 39(4), 102518. Https://Doi.Org/10.1016/J.Est.2021.102518. DOI: https://doi.org/10.1016/j.est.2021.102518

Su, S., Li, W., Li, Y., Garg, A., Gao, L., & Zhou, Q. (2021). Multi-Purpose Design Optimization Of Battery Thermal Management Systems For Electric Vehicles. Applied Thermal Engineering, 196(3), 83. Https://Doi.Org/10.1016/J.Appltermaleng.2021.117235. DOI: https://doi.org/10.1016/j.applthermaleng.2021.117235

Wang, H., Liu, J., Xia, D., Fu, Y., Zhu, Y., Hu, B., Tao, Z., Xiao, H., & Deng, S. (2020). Effect Of Low Temperature On Battery Recharge And Discharge Voltage. Iop Conference Series: Earth And Environmental Sciences, 571(1), 26. Https://Doi.Org/10.1088/1755-1315/571/1/012011. DOI: https://doi.org/10.1088/1755-1315/571/1/012011

Wang, T., Tseng, K. J., Zhao, J., & Wei, Z. (2020). Thermal Investigation Of Lithium-Ion Battery Modules With Different Cell Arrangement Structures And Forced Air Cooling Strategies. Applied Energy, 134(3), 229–238. Https://Doi.Org/10.1016/J.Apenergy.2014.08.013. DOI: https://doi.org/10.1016/j.apenergy.2014.08.013

Wang, Y., Liu, B., Han, P., Hao, C., Li, S., You, Z., & Wang, M. (2022). Optimization Of Air-Based Thermal Management Systems For Lithium-Ion Battery Packs. Journal Of Energy Storage, 44(3), 48. Https://Doi.Org/10.1016/J.Est.2021.103314. DOI: https://doi.org/10.1016/j.est.2021.103314

Yaqien, A. A., Yamin, M., & Mahandari, C. P. (2020). Lifepo4 Battery Thermal Management System Using Mini Channel Cooling Plates For Electric Vehicle Applications. Jst (Journal Of Science And Technology, 12(3(3), 38. Https://Doi.Org/10.23887/Jstundiksha.V12i3.59241. DOI: https://doi.org/10.23887/jstundiksha.v12i3.59241

Yin, M., Ge, R., & Li, J. (2021). Analysis Of The Effect Of The Number Of Blades On The Aerodynamic Performance And Noise Of The Front Centrifugal Fan. Journal Of Physics: Conference Series, 2772(1), 12007. Https://Doi.Org/10.1088/1742-6596/2772/1/012007. DOI: https://doi.org/10.1088/1742-6596/2772/1/012007

You, M., Xu, Y., & Huangfu, Y. (2019). Optimization Of Lithium-Ion Battery Pack Structure Based On Fluid-Solid Conjugate Thermodynamic Analysis. Advanced Energy, 152(3), 643–648. Https://Doi.Org/10.1016/J.Egypro.2018.09.224. DOI: https://doi.org/10.1016/j.egypro.2018.09.224

Yu, J., Zhang, T., & Qian, J. (2023). - Classification: Electric Motor, Pump (Fan (Ed.); Pp. 11–172). Https://Doi.Org/10.1533/9780857093813.11. DOI: https://doi.org/10.1533/9780857093813.11

Yu, X., Lu, Z., Zhang, L., Wei, L., Cui, X., & Jin, L. (2018). Experimental Study Of Transient Thermal Characteristics Of Staggered Lithium-Ion Battery Packs With Air Cooling Strategy. International Journal Of Heat And Mass Transfer, 143(8), 83. Https://Doi.Org/10.1016/J.Ijheatmasstransfer.2019.118576. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118576

Zhang, Y., Song, X., Ma, C., Hao, D., & Chen, Y. (2020). Effect Of Structure And Spacing Arrangement On The Thermal Characteristics Of Li-Ion Battery Packs At Various Discharge Rates. Applied Thermal Engineering, 165(3), 38. Https://Doi.Org/10.1016/J.Appltermaleng.2019.114610. DOI: https://doi.org/10.1016/j.applthermaleng.2019.114610

Zhao, G., Wang, X., & Negnevitsky, M. (2020). Study Of Variable Cell Distance On Heat Transfer Efficiency Of Air Cooling Battery Thermal Management Systems (P. 38). Https://Doi.Org/10.3390/App112311155. DOI: https://doi.org/10.3390/app112311155

Downloads

Published

2024-10-25

How to Cite

Luthfi, M., Ghozali, M., & Kurniawan, Y. (2024). The Effect of Battery Settings and Fan Parameters on the Performance of the Lithium-Ion Battery Thermal Management System in a Circular Configuration. JST (Jurnal Sains Dan Teknologi), 13(3), 362–373. https://doi.org/10.23887/jstundiksha.v13i3.84849

Issue

Section

Articles