Comparison of Vegetation Index Method to Detect Drought in Bondowoso Regency, East Java

Main Article Content

Yuda Aulia Aziz
A Sediyo Adi Nugraha

Abstract

Drought in Bondowoso County has the potential to occur sustainably with diverse topographic variations. This study aims to determine drought conditions by using a vegetation index with a multi-temporal Landsat 8 OLI image from January-July 2021. The vegetation index methods used are SAVI (Soil Adjusted Vegetation Index), EVI (Enhanced Vegetation Index), and NDVI (Normalized Difference Vegetation Index). The three vegetation indices were chosen because they provide different vegetation sensitivities. The results showed that all three vegetation indices provided a slight difference inaccuracy. SAVI has an accuracy result of 86%, EVI with 14% accuracy, and NDVI has 80% accuracy. The difference in accuracy results from the condition of Bondowoso Regency with a variety of vegetation. Temporally also showed that SAVI is more sensitive to vegetation information, especially in areas close to clouds, than in EVI and NDVI. It can be concluded that SAVI can provide drought information better than EVI and NDVI.

Article Details

Section
Articles
Author Biographies

Yuda Aulia Aziz, Universitas Pendidikan Ganesha

Department of Geography

A Sediyo Adi Nugraha, Universitas Pendidikan Ganesha

Department of Geography

References

Congalton, R.G, & Green, K. (2008). Assessing The Accuracy of Remotely Sensed Data: Principles and Practices (2nd Edition). CRC Press, Taylor and Francis Group.

Congalton, Russell G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B

Coopersmith, J. (2016). Lisa Gitelman. Paper Knowledge: Toward a Media History of Documents. The American Historical Review, 121(4), 1248–1249. https://doi.org/10.1093/ahr/121.4.1248

Huete, A., Didan, K., Leeuwen, W. V., Miura, T., & Glenn, E. (2011). MODIS Vegetation Indices. Land Remote Sensing and Global Environmental Change. Springer.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1), 195–213.

Huete, Ar. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X

Inarossy, N., & P, S. Y. J. (2019). Klasifikasi Wilayah Risiko Bencana Kekeringan Berbasis Citra Satelit Landsat 8 Oli Dengan Kombinasi Metode Moran ’ s I dan Getis Ord G * ( Studi Kasus : Kabupaten Boyolali dan Klaten ). Indonesian Journal of Computing and Modeling, 2(2), 36–54.

Iryanthony, S. B., Hakeem, A. R., Rahmadewi, D. P., & Artikel, S. (2019). Strategi Pengelolaan Kekeringan Masyarakat Sub DAS Bompon di Lereng Kaki Vulkanik Pegunungan Sumbing. Jurnal Geografi, 16(1). https://doi.org/10.15294/jg.v16i1.10896

Jeyaseelan, A. T. (2003). Droughts & floods assessment and monitoring using remote sensing and GIS. Satellite Remote Sensing and GIS Applications in Agricultural Meteorology, 291–313.

Marantika, E. P., & Sudaryatno. (n.d.). Hubungan Antara Nilai Spektral Dengan Tekstur Tanah Pada Data Digital Citra Alos Avnir-2 Sebagian Kabupaten Purworejo, Jawa Tengah. Universitas Gadjah Mada.

Nugraha, A. S. A. (2016). Pemanfaatan Citra Penginderaan Jauh Multi-Tingkat Untuk Pemetaan Perubahan Kekeringan (Kasus di Provinsi Jawa Timur). Universitas Gadjah Mada.