Penilaian Kerawanan Banjir berbasis SIG menggunakan Model Statistik Information Value di Kawasan Perkotaan Burau
Main Article Content
Abstract
Kawasan Perkotaan Burau merupakan salah satu daerah yang sering dilanda banjir. Kejadian banjir tercatat terjadi setiap tahun selama periode 2017 – 2023. Kejadian banjir terparah pada tahun 2020, mengakibatkan 700 orang mengungsi dan 140 rumah terendam. Banjir menimbulkan korban jiwa dan kerugian ekonomi terhadap aset yang terkonsentrasi di perkotaan. Penelitian ini bertujuan untuk mengkaji tingkat kerawanan banjir di Kawasan Perkotaan Burau. Untuk mencapai tujuan tersebut, dilakukan inventarisasi data kejadian banjir yang bersumber dari laporan banjir dari pemerintah daerah, situs berita online terpercaya dan hasil interpretasi Citra Sentinel-1 SAR menggunakan platform Google Earth Engine (GEE). Penilaian kerawanan banjir menggunakan model statistik Information Value (IV) dengan menghitung nilai IV berdasarkan keterkaitan kejadian banjir dan faktor pengontrol banjir yaitu elevasi, lereng, curah hujan, jarak dari sungai, dan tutupan lahan. Hasil penelitian menunjukkan bahwa 62% dari total wilayah penelitian berada pada tingkat kerawanan rendah, 28% berada pada tingkat kerawanan sedang, 10% berada pada tingkat kerawanan tinggi. Hasil pemetaan kerawanan banjir divalidasi menggunakan kurva Area Under Curve (AUC), hasil uji akurasi menunjukkan bahwa tingkat keberhasilan model IV adalah 0.791, nilai tersebut masuk dalam kategori good nilai 0.7 – 0.8. Hasil penelitian ini dapat menjadi salah satu pertimbangan untuk mitigasi bencana banjir Kawasan Perkotaan Burau.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Media Komunikasi Geografi agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)
References
Addis, A. (2023). GIS – based flood susceptibility mapping using frequency ratio and information value models in upper Abay river basin, Ethiopia. Natural Hazards Research, 3(2), 247–256. https://doi.org/10.1016/j.nhres.2023.02.003
Bera, S., Das, A., & Mazumder, T. (2022). Evaluation of machine learning, information theory and multi-criteria decision analysis methods for flood susceptibility mapping under varying spatial scale of analyses. Remote Sensing Applications: Society and Environment, 25(December 2021), 100686. https://doi.org/10.1016/j.rsase.2021.100686
Bioresita, F., Ngurawan, M. G. R., & Hayati, N. (2022). Identifikasi Sebaran Spasial Genangan Banjir Memanfaatkan Citra Sentinel-1 dan Google Earth Engine (Studi Kasus: Banjir Kalimantan Selatan). Geoid, 17(1), 108. https://doi.org/10.12962/j24423998.v17i1.10383
BPBD Sulsel. (2020). Kejadian Bencana Kabupaten Luwu Timur. https://siandalan.sulselprov.go.id/
BPS. (2023). Kecamatan Burau Dalam Angka. https://luwutimurkab.bps.go.id/publication.html?Publikasi%5BtahunJudul%5D=&Publikasi%5BkataKunci%5D=kecamatan+burau+dalam+angka&Publikasi%5BcekJudul%5D=0&yt0=Tampilkan
BSN. (2015). Metode Pemetaan Rawan Banjir SNI 8197:2015. Badan Standardisasi Nasional.
Bunmi Mudashiru, R., Sabtu, N., Abdullah, R., Saleh, A., & Abustan, I. (2022). Optimality of flood influencing factors for flood hazard mapping: An evaluation of two multi-criteria decision-making methods. Journal of Hydrology, 612(PA), 128055. https://doi.org/10.1016/j.jhydrol.2022.128055
Cabrera, J. S., & Lee, H. S. (2019). Flood-prone area assessment using GIS-based multi-criteria analysis: A case study in Davao Oriental, Philippines. Water (Switzerland), 11(11). https://doi.org/10.3390/w11112203
Chauhan, S., Sharma, M., & Arora, M. K. (2010). Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides, 7(4), 411–423. https://doi.org/10.1007/s10346-010-0202-3
Chaulagain, D., Ram Rimal, P., Ngando, S. N., Nsafon, B. E. K., Suh, D., & Huh, J. S. (2023). Flood susceptibility mapping of Kathmandu metropolitan city using GIS-based multi-criteria decision analysis. Ecological Indicators, 154(May), 110653. https://doi.org/10.1016/j.ecolind.2023.110653
Chen, Y. (2022). Flood hazard zone mapping incorporating geographic information system (GIS) and multi-criteria analysis (MCA) techniques. Journal of Hydrology, 612(PC), 128268. https://doi.org/10.1016/j.jhydrol.2022.128268
Danoedoro, P. (2015). Pengaruh Jumlah dan Metode Pengambilan Titik Sampel Penguji terhadap Tingkat Akurasi Klasifikasi Citra Digital Penginderaan Jauh. Simposium Nasional Sains Geoinformasi Ke-4, November 2015.
DPUPR Luwu Timur. (2022). Laporan Akhir Rencana Detail Tata Ruang Kawasan Perkotaan Burau Tahun 2022. DPUPR Luwu Timur.
Du, G., Zhang, Y., Yang, Z., Guo, C., Yao, X., & Sun, D. (2019). Landslide susceptibility mapping in the region of eastern Himalayan syntaxis, Tibetan Plateau, China: a comparison between analytical hierarchy process information value and logistic regression-information value methods. Bulletin of Engineering Geology and the Environment, 78(6), 4201–4215. https://doi.org/10.1007/s10064-018-1393-4
Ebrahimi, E., Araújo, M. B., & Naimi, B. (2023). Flood susceptibility mapping to improve models of species distributions. Ecological Indicators, 157(July), 111250. https://doi.org/10.1016/j.ecolind.2023.111250
Edamo, M. L., Ukumo, T. Y., Lohani, T. K., Ayana, M. T., Ayele, M. A., Mada, Z. M., & Abdi, D. M. (2022). A comparative assessment of multi-criteria decision-making analysis and machine learning methods for flood susceptibility mapping and socio-economic impacts on flood risk in Abela-Abaya floodplain of Ethiopia. Environmental Challenges, 9(October). https://doi.org/10.1016/j.envc.2022.100629
Forson, E. D., & Amponsah, P. O. (2023). Prediction of gold mineralization zones using spatial techniques and geophysical data: A case study of the Josephine prospecting licence, NW Ghana. HELIYON, e22398. https://doi.org/10.1016/j.heliyon.2023.e22398
Gudiyangada Nachappa, T., & Meena, S. R. (2020). A novel per pixel and object-based ensemble approach for flood susceptibility mapping. Geomatics, Natural Hazards and Risk, 11(1), 2147–2175. https://doi.org/10.1080/19475705.2020.1833990
Hadmoko, D. S., Lavigne, F., & Samodra, G. (2017). Application of a semiquantitative and GIS-based statistical model to landslide susceptibility zonation in Kayangan Catchment, Java, Indonesia. Natural Hazards, 87(1), 437–468. https://doi.org/10.1007/s11069-017-2772-z
Hizbaron, D. R., Dimyati, M., Hadi, M. P., Khakim, N., Suarma, U., & Pujiastuti, I. (2023). Co-creation of urban hazard, vulnerability and risk information system towards sustainable regional development trajectories in Sulawesi, Indonesia. Natural Hazards, 0123456789. https://doi.org/10.1007/s11069-023-06234-0
Indratmoko, S. (2019). Susceptibility And Flood Risk To Identify The Suitability Toward Spatial Pattern In Tangerang Selatan City. Universitas Gadjah Mada.
Islam, R., & Chowdhury, P. (2023). Local-scale Flash Flood Susceptibility Assessment in Northeastern Bangladesh using Machine Learning Algorithms. Environmental Challenges, 14(July 2023), 100833. https://doi.org/10.1016/j.envc.2023.100833
Jamali, B., Bach, P. M., & Deletic, A. (2020). Rainwater harvesting for urban flood management – An integrated modelling framework. Water Research, 171, 115372. https://doi.org/10.1016/j.watres.2019.115372
Karymbalis, E., Andreou, M., Batzakis, D. V., Tsanakas, K., & Karalis, S. (2021). Integration of gis-based multicriteria decision analysis and analytic hierarchy process for flood-hazard assessment in the megalo rema river catchment (East attica, greece). Sustainability (Switzerland), 13(18). https://doi.org/10.3390/su131810232
Lal, P., Prakash, A., & Kumar, A. (2020). Google Earth Engine for concurrent flood monitoring in the lower basin of Indo-Gangetic-Brahmaputra plains. Natural Hazards, 104(2), 1947–1952. https://doi.org/10.1007/s11069-020-04233-z
Mardiatno, D., Khakim, N., & Priyambodo, T. K. (2016). Identification of flood-prone area using remotely sensed data - Case in Tanjung Selor City, North Kalimantan. Proceedings of the 2015 IEEE International Conference on Aerospace Electronics and Remote Sensing, ICARES 2015, December, 1–4. https://doi.org/10.1109/ICARES.2015.7429823
Mind’je, R., Li, L., Kayumba, P. M., Mupenzi, C., Mindje, M., & Hao, J. (2023). Exploring a form of pixel-based information value model for flood probability assessment and geo-visualization over an East African basin: a case of Nyabarongo in Rwanda. Environmental Earth Sciences, 82(17), 1–21. https://doi.org/10.1007/s12665-023-11088-7
Muta’ali, L. (2014). Perencanaan Pengembangan Wilayah Berbasis Pengurangan Risiko Bencana. Badan Penerbit Fakultas Geografi (BPFG), Universitas Gadjah Mada.
Novaliadi, D., & Hadi, M. P. (2013). Pemetaan Kerawanan Banjir Dengan Aplikasi Sistem Informasi Geografis Di Sub Das Karang Mumus Provinsi Kalimantan Timur. Jurnal Bumi Indonesia, 53(9), 1689–1699.
Pradhan, B., Lee, S., Dikshit, A., & Kim, H. (2023). Spatial flood susceptibility mapping using an explainable artificial intelligence (XAI) model. Geoscience Frontiers, 14(6), 101625. https://doi.org/10.1016/j.gsf.2023.101625
Rahardjo, P. N. (2018). 7 Penyebab Banjir Di Wilayah Perkotaan Yang Padat Penduduknya. Jurnal Air Indonesia, 7(2). https://doi.org/10.29122/jai.v7i2.2421
Singh, K., & Kumar, V. (2018). Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya. Journal of Mountain Science, 15(4), 808–824. https://doi.org/10.1007/s11629-017-4634-2
Sitorus, I. H. O., Bioresita, F., & Hayati, N. (2021). Analisa Tingkat Rawan Banjir di Daerah Kabupaten Bandung Menggunakan Metode Pembobotan dan Scoring. Jurnal Teknik ITS, 10(1). https://doi.org/10.12962/j23373539.v10i1.60082
Syafutri, R. D. (2022). Flood Hazard Assessment In Semarang City Based On Logistic Regression And Google Earth Engine Approach. Universitas Gadjah Mada.
Tehrany, M. S., Lee, M. J., Pradhan, B., Jebur, M. N., & Lee, S. (2014). Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environmental Earth Sciences, 72(10), 4001–4015. https://doi.org/10.1007/s12665-014-3289-3
Tentua, V. C., Gaspersz, E. J., & Puturuhu, F. (2018). Evaluasi Permukiman Berdasarkan Tingkat Kerawanan Banjir Pada Das Wae Ruhu. Jurnal Budidaya Pertanian, 14(2), 113–124. https://doi.org/10.30598/jbdp.2018.14.2.113
UN-SPIDER Knowledge Portal. (2019). Step-by-Step: Recommended Practice: Flood Mapping and Damage Assessment Using Sentinel-1 SAR Data in Google Earth Engine. Un-Spider.Org. https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step
Wang, Yi, Fang, Z., Hong, H., Costache, R., & Tang, X. (2021). Flood susceptibility mapping by integrating frequency ratio and index of entropy with multilayer perceptron and classification and regression tree. Journal of Environmental Management, 289(March), 112449. https://doi.org/10.1016/j.jenvman.2021.112449
Wang, Yongheng, Li, C., Hu, Y., Lv, J., Liu, M., Xiong, Z., & Wang, Y. (2023). Evaluation of urban flooding and potential exposure risk in central and southern Liaoning urban agglomeration, China. Ecological Indicators, 154(January), 110845. https://doi.org/10.1016/j.ecolind.2023.110845
Wu, X., Wang, K., Li, Y., Liu, K., & Huang, B. (2021). Accelerating haze removal algorithm using cuda. Remote Sensing, 13(1), 1–23. https://doi.org/10.3390/rs13010083
Ya, R., Wu, J., Tang, R., & Zhou, Q. (2023). Increased flood susceptibility in the Tibetan Plateau with climate and land use changes. Ecological Indicators, 156(July). https://doi.org/10.1016/j.ecolind.2023.111086
Yamani, A., Rustiadi, E., & Widiatmaka, W. (2015). Evaluasi Pola Ruang Berbasis Kerawanan Banjir Di Kabupaten Pidie. Tataloka, 17(3), 130. https://doi.org/10.14710/tataloka.17.3.130-146
Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3–4), 251–266. https://doi.org/10.1016/j.enggeo.2005.02.002
Zhao, G., Pang, B., Xu, Z., Peng, D., & Zuo, D. (2020). Urban flood susceptibility assessment based on convolutional neural networks. Journal of Hydrology, 590(February), 125235. https://doi.org/10.1016/j.jhydrol.2020.125235
Zhu, S., Feng, H., Arashpour, M., & Zhang, F. (2024). Enhancing urban flood resilience: A coupling coordinated evaluation and geographical factor analysis under SES-PSR framework. International Journal of Disaster Risk Reduction, 101(July 2023), 104243. https://doi.org/10.1016/j.ijdrr.2024.104243