Pengembangan Verifikasi Informasi Cek Bank dengan Menggunakan CNN-XGBoost Image Classification untuk Verifikasi Tanda Tangan dan Pengenalan Tulisan Tangan
DOI:
https://doi.org/10.23887/insert.v5i2.85907Keywords:
Convolutional Neural Network (CNN), XGBoost, Verifikasi Tanda Tangan, Pengenalan Tulisan Tangan, Cek BankAbstract
Sistem bank menjadi lebih maju di mana banyak orang yang sekarang bahkan tidak memegang uang tunai dan melakukan transaksi melalui aplikasi atau transfer online.
Namun, ada beberapa transaksi bank yang ketinggalan jaman, seperti cek bank tertulis. Verifikasi dan kliring cek bank tertulis membutuhkan tenaga kerja yang sangat besar. Oleh karena itu, ada berbagai penelitian yang dilakukan untuk membuat transaksi cek bank menjadi lebih efisien, salah satunya adalah penggunaan machine learning. Penelitian ini dilakukan dengan tujuan mengetahui akurasi CNN-XGBoost untuk verifikasi tanda tangan dan rekognisi angka dan huruf. Untuk pengembangan penelitian ini, sebuah simulasi verifikasi dan pengecekan informasi cek bank akan dilakukan dengan model CNN-XGBoost. Dataset yang dipakai untuk pelatihan model di penelitian ini adalah IDRBT bank cheque dataset, EMNIST Digit, dan EMNIST Letter. Dataset akan di preprocess menggunakan beberapa cara seperti menghilangkan background, grayscale, padding, pixel normalize, histogram equalization, gaussian blur, dan canny edge detection. Dari penelitian didapatkan hasil accuracy model untuk verifikasi tanda tangan sebesar 97.06%, untuk rekognisi huruf 98.76%, dan rekognisi angka 99.57%. Model tidak dapat digunakan untuk sepenuhnya menggantikan tenaga kerja manusia dalam kliring cek bank tertulis. Ini karena risiko kesalahan dalam transfer keuangan sangat berbahaya, kesalahan dalam transfer dapat menyebabkan uang yang dikirim jauh berbeda dari yang tertera di cek. CNN-XGBoost masih berguna untuk membantu ekstraksi informasi untuk membantu mengurangi tenaga kerja yang dibutuhkan.
References
Abdo, H. A., Abdu, A., Manza, R., & Bawiskar, S. (2023). Extraction of Bank Cheque Fields Based on Faster R-CNN (Vol. 4). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-196-8_12
Agrawal, P., Chaudhary, D., & Madaan, V. (2020). Automated bank cheque verification using image processing and deep learning methods. Multimedia Tools and Applications, 80, 5319–5350.
Athuman, J. (2023). IMPERFECT GRAIN IDENTIFICATION OF WHEAT BASED ON IMAGE PROCESSING AND CNN. International Journal of Education and Social Science Research, 6(1), 89–106.
Babayomi, M., Olagbaju, O. A., & Kadiri, A. A. (2023). Convolutional XGBoost (C-XGBOOST) Model for Brain Tumor Detection.
Bnouni, N., Amor, H. Ben, Rekik, I., Rhim, M. S., Solaiman, B., & Amara, N. E. Ben. (2021). Boosting CNN Learning by Ensemble Image Preprocessing Methods for Cervical Cancer Segmentation. 18th IEEE International Multi-Conference on Systems, Signals and Devices, SSD 2021, 264–269. https://doi.org/10.1109/SSD52085.2021.9429422
Cohen, G., Afshar, S., Tapson, J., & Van Schaik, A. (2017). EMNIST: Extending MNIST to handwritten letters. Proceedings of the International Joint Conference on Neural Networks, 2017-May, 2921–2926. https://doi.org/10.1109/IJCNN.2017.7966217
Dansena, P., Bag, S., & Pal, R. (2017). Differentiating Pen Inks in Handwritten Bank Cheques Using Multi-layer Perceptron. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10597 LNCS, 655–663. https://doi.org/10.1007/978-3-319-69900-4_83
Hedhoud, Y., Mekhaznia, T., & Amroune, M. (2023). An improvement of the CNN-XGboost model for pneumonia disease classification. Polish Journal of Radiology, 88(1), e483–e493. https://doi.org/10.5114/pjr.2023.132533
Hidayat, T., Hadinata, E., Damanik, I. S., Vikki, Z., & Irvanizam, I. (2023). Implementation of Hybrid CNN-XGBoost Method for Leukemia Detection Problem. Infolitika Journal of Data Science, 1(1), 15–21. https://doi.org/10.60084/ijds.v1i1.87
Jha, M., Kabra, M., Jobanputra, S., & Sawant, R. (2019). Automation of Cheque Transaction using Deep Learning and Optical Character Recognition. Proceedings of the 2nd International Conference on Smart Systems and Inventive Technology, ICSSIT 2019, Icssit, 309–312. https://doi.org/10.1109/ICSSIT46314.2019.8987925
Khan, M. S. U. (2021). A novel segmentation dataset for signatures on bank checks. ArXiv. https://doi.org/10.34740/KAGGLE/DS/1041694.Dansena
Leszczyński, M. (2023). Image Preprocessing for Illumination Invariant Face Verification. Journal of Telecommunications and Information Technology, 4, 19–25. https://doi.org/10.26636/jtit.2010.4.1092
Maharana, K., Mondal, S., & Nemade, B. (2022). A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings, 3(1), 91–99. https://doi.org/10.1016/j.gltp.2022.04.020
Mohammadabadi, A., Rahnama, S., & Afshari, A. (2022). Indoor Occupancy Detection Based on Environmental Data Using CNN-XGboost Model: Experimental Validation in a Residential Building. Sustainability (Switzerland), 14(21). https://doi.org/10.3390/su142114644
Naseri, H., & Mehrdad, V. (2023). Novel CNN with investigation on accuracy by modifying stride, padding, kernel size and filter numbers. Multimedia Tools and Applications, 82(15), 23673–23691. https://doi.org/10.1007/s11042-023-14603-x
Pei, X., Zhao, Y. hong, Chen, L., Guo, Q., Duan, Z., Pan, Y., & Hou, H. (2023). Robustness of machine learning to color, size change, normalization, and image enhancement on micrograph datasets with large sample differences. Materials & Design, 232, 112086. https://doi.org/10.1016/j.matdes.2023.112086
Raichura, M., Chothani, N., & Patel, D. (2021). Efficient CNN‐XGBoost technique for classification of power transformer internal faults against various abnormal conditions. IET Generation, Transmission & Distribution, 15(5), 972–985. https://doi.org/10.1049/gtd2.12073
Ren, X., Guo, H., Li, S., Wang, S., & Li, J. (2017). A novel image classification method with CNN-XGBoost model. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10431 LNCS, 378–390. https://doi.org/10.1007/978-3-319-64185-0_28
Sasikumar, A., Sathyanarayanan, M., Sriayapppan, A. N., Santhosh, R., & Reshma, R. (2023). A CNN-based Canny Edge Detection Approach for Car Scratch Detection. 6th International Conference on Inventive Computation Technologies, ICICT 2023 - Proceedings, 404–409. https://doi.org/10.1109/ICICT57646.2023.10134444
Sikira, R. (2021). Customers’ Opinions on Reasons for Using Online Banking: Experience of Customers in Tanzania. International Journal of Scientific Research and Management, 9(05), 2185–2195. https://doi.org/10.18535/ijsrm/v9i05.em02
Thongsuwan, S., Jaiyen, S., Padcharoen, A., & Agarwal, P. (2021). ConvXGB: A new deep learning model for classification problems based on CNN and XGBoost. Nuclear Engineering and Technology, 53(2), 522–531. https://doi.org/10.1016/j.net.2020.04.008
Weldegebriel, H. T., Liu, H., Haq, A. U., Bugingo, E., & Zhang, D. (2020). A New Hybrid Convolutional Neural Network and eXtreme Gradient Boosting Classifier for Recognizing Handwritten Ethiopian Characters. IEEE Access, 8, 17804–17818. https://doi.org/10.1109/ACCESS.2019.2960161
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Kevin Saputra Utomo, Yefta Christian, Andik Yulianto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
INSERT is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.