
ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 12, Issue 2, July 2023

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 244

APPLYING USE CASE 2.0 APPROACH TO THE DEVELOPMENT OF
IOT-BASED RAINFALL MONITORING SYSTEM

Mohammad Fajar1, Ferian Bagus Chandra2, Hamdan Arfandy3

1,2
Teknik Informatika, STMIK Kharisma Makassar

3
Teknik Informatika, Universitas Islam Makassar

email: fajar@kharisma.ac.id, talkactive@gmail.com, hamdanarfandy@gmail.com

Abstract

The use of Internet of Things (IoT) technology for monitoring and controlling environmental conditions or
objects is quite popular. However, most of the development of the IoT systems including rainfall monitoring
systems, mainly focuses on the implementation perspective, rather than discussing the development
approaches or design techniques. The use of suitable development approaches will increase
maintainability aspect of the IoT system in the future. Therefore, the aim of this study is to implement and
evaluate the use case 2.0 approach in modeling and designing an IoT-based monitoring rainfall system.
Data collection was performed through evaluation using object-oriented metrics to measure encapsulation,
polymorphism, and reusability properties of the designed system. In modeling the IoT system, collected
requirements specifications are organized into user stories. The user stories are then mapped into UML
use case diagrams. Each of the use case should be sliced into thinner pieces, taking into account of the
basic and alternative flows of the user stories. Moreover, the use case slices are designed, implemented,
and evaluated independently. The results of modeling and designing a rainfall monitoring system using the
use-case 2.0 are then implemented on the NodeMCU platform and Android-based application. Evaluation
results show that the implementation of use-case Reading, Viewing and Searching for Rainfall Data can be
run successfully on the target platform. The measurement uses object-oriented metrics on the designed
IoT system indicating that the use case slices have an impact on the ease of system modification level.

Keywords : Use-Case 2.0, IoT, IoT Modeling, Rainfall Monitoring System, Object Oriented Metrics

Received: 14-05-2023 | Revised: 27-07-2023 | Accepted: 28-07-2023

DOI: https://doi.org/10.23887/janapati.v12i2.61529

INTRODUCTION

Currently, the Internet of Things (IoT)
has become one of the most studied topics in
the field of information and communication
technology. IoT is a system that connects
various devices such as sensors, actuators, and
computers through the internet to perform
specific tasks for users. It serves as a bridge
between physical objects in the real world, such
as kitchen appliances or vehicles, and virtual
objects in the digital world, allowing them to
communicate [1].

Many of the IoT systems or devices
have been studied and developed by
researchers in various fields. As example, in the
field of agriculture, research [2], [3], [4], and [5]
have developed IoT-based smart farming
systems to monitor and control environmental
conditions such as air temperature, soil moisture,
and light. In the field of health, as studied by [6]
and [7], IoT systems are utilized to monitor the
conditions of the diabetic patients. The IoT
technology was also applied by [8], for remote

control system household electric appliances.
The majority of the studies focuses mainly on the
implementation issue of the IoT system, without
describing and discussing specifically of how to
use development approaches or methodologies.
It is necessary to apply a certain development
approach or a design methodology in order to
handle system complexity and to increase
maintainability, as well as to ensure the quality of
the IoT system [9], [10].

Several studies related to the
approaches, methodologies, and development
tools for the IoT systems have been reviewed in
the literature. Such as the use of Agile
methodology for IoT application development
and increasing its business value [11], the
implementation of System Modeling Language
for IoT application engineering [12], and its
development based on service-oriented
architecture (SOA) using the modeling language
SoaML4IoT [13]. In the same way, study in [14]
shows of how to employ UML to model IoT
systems for monitoring and predicting power

https://doi.org/10.23887/janapati.v12i2.61529

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 12, Issue 2, July 2023

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 245

consumption. However, using the modelling
language tools only is not enough, without
specific methods or techniques to guide the
modeling process of the system, including which
diagrams need to be applied. Therefore, this
research aims to implement and evaluate the
use-case 2.0 approach to modeling and
designing an IoT system. As a case-study, we
develop a rainfall monitoring system that consist
of mobile apps and IoT devices. The Use-case
2.0 is a extended version of the use-case driven
approach based on the idea of user interaction
with user stories and agile methodology, and it is
an easy-to-use approach [15]. In this research,
modeling is an activity that is carried out before
implementation phase, by creating a more
abstract model or form that can be further
analyzed, so that system developers have a
clearer understanding of what is being
developed [9], [16]. The contribution of this work
is to present of how to model and design of IoT
systems, specifically rainfall monitoring system
that increase maintainability using use case 2.0
approach.

METHOD
The stages in this research follow the

system development life cycle scenario that
begins with system requirements and analysis,
design, implementation, and evaluation. The
use-case 2.0 approach is applied as a guide in
each of these stages, specifically in the
requirements and analysis phase (modeling). In
the evaluation step, the implementation code of
selected use-cases that have been defined
should be tested. Moreover, the quality aspects
of the system are evaluated using object-
oriented metrics to measure encapsulation,
polymorphism, and reusability properties of two
systems that is with and without use case 2.0
approach. The results of the evaluation are then
used as the basis for drawing a conclusion of
this research.

A. Implementation Scenario of Use-Case 2.0

In this paper, the scenario used in
implementing the Use-Case 2.0 approach refers
to the study [15], as follows:

1. Identify the use-case story of each use-

case.
2. Slice each use-case into small pieces (use

case slice).
3. Prepare the use-case slices.
4. Analyze the use-case slices.
5. Implement the use-case slices.

6. Test the use-case slices.

B. Evaluation Using Object Oriented Metrics

The level of modification is an important
aspect in system development. As we know,
information systems or software will always need
to be modified or changed to fit the users' needs
[17]. System components that are designed
independently will make it easier for developers
to modify the system's functionality without
affecting other parts. In the evaluation process,
system components with low dependencies
(loose coupling) are important parameters for
developing quality information systems or
software. This is because the cost incurred from
maintaining or modifying the system is seen as
the largest cost of the overall system
development [18]. In information technology
field, one of the important tools for measuring
code or software quality is object-oriented
metrics [19].

The research conducted by [20] used
object-oriented metrics to measure the level of
modification of a model-driven development
methodology, including the use-case driven
approach. The measurement was done on the
level of encapsulation, polymorphism, and
reusability of a system.

Encapsulation

Study [21] proposed a formula to calculate
the object-oriented metrics, where encapsulation
can be measured using Method Hiding Factors
(MHF) and Attribute Hiding Factors (AHF). In this
paper, the MHF and AFH parameter defined
formally is as follows:
 𝑀𝐻𝐹 = ∑𝑖𝑇𝐶∑𝑚=1𝑚𝑑(𝑐𝑖)(1−𝑉(𝑀𝑚𝑖))∑𝑖−1𝑇𝐶 𝑀𝑑(𝑐𝑖) (1)

Where 𝑀𝑑(𝑐𝑖) is the number of methods
declared in a class, and
 𝐴𝐻𝐹 = ∑𝑗=1𝑇𝐶 𝑖𝑠𝑣𝑖𝑠𝑖𝑏𝑙𝑒(𝑀𝑚𝑖,𝐶𝑗)𝑇𝐶−1 (2)

Where 𝑇𝐶 is the total number of classes, and

 𝑖𝑠𝑣𝑖𝑠𝑖𝑏𝑙𝑒(𝑀𝑚𝑖 , 𝐶𝑗) = {10𝑖𝑓𝑗 ≠ 𝑖 ∧ 𝐶𝑗𝑚𝑎𝑦𝑐𝑎𝑙𝑙𝑀𝑚𝑖𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)

i is the iterator for calculations from class 1 to
class 𝑇𝐶 of the system, if the system has class 𝑇𝐶. M is the iterator for computation from the
first method of class i of the system to the
method 𝑀𝑑(𝑐𝑖) of class i if class i has an 𝑀𝑑(𝑐𝑖)

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 12, Issue 2, July 2023

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 246

method defined in that class. 𝑉(𝑀𝑚𝑖) is the
number of classes that call method to m from
class to i (besides class to i itself), divided by
the total class of the system that has been
reduced by 1.

Polymorphism
The degree of polymorhpism can be measured
using the number of method overriden by a
subclass (NMO) and polymorphism factor (PF)
with equation 3 and 4.
 𝑁𝑀𝑂 = 𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑒𝑛𝑚𝑒𝑡ℎ𝑜𝑑𝑠 ∈ 𝑎𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠 (4)
 𝑃𝐹 = ∑𝑖=1𝑇𝐶 𝑀0(𝐶𝑖)∑𝑖=1𝑇𝐶 [𝑀𝑛(𝐶𝑖)×𝐷𝐶(𝐶𝑖)] (5)

Where 𝑀𝑑(𝐶𝑖) = 𝑀𝑛(𝐶𝑖) + 𝑀0(𝐶𝑖)

and
 𝑀𝑛(𝐶𝑖) = 𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑛𝑒𝑤𝑚𝑒𝑡ℎ𝑜𝑑𝑠, 𝑀𝑜(𝐶𝑖) = 𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑖𝑛𝑔𝑚𝑒𝑡ℎ𝑜𝑑𝑠, 𝐷𝐶(𝐶𝑖) = 𝑡ℎ𝑒𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑐𝑜𝑢𝑛𝑡

Reusability
Reusability aspects of the system can be
computed using reuse ratio (RR) and
specialized ratio (SR) with equation 5 and 6 as
follows.
 𝑅𝑅 = ∑𝑆𝐶𝑇𝐶 (6)

 𝑆𝑅 = ∑𝐼𝐶𝑇𝐶 (7)

Where
 ∑𝑆𝐶 = 𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑢𝑝𝑒𝑟 ∨ 𝑏𝑎𝑠𝑒𝑐𝑙𝑎𝑠𝑠𝑒𝑠, ∑𝐼𝐶 = 𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑇𝐶 = 𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑢𝑠𝑒𝑑 ∈ 𝑠𝑦𝑠𝑡𝑒𝑚

As the results of the research
conducted by [20] and [21], high values of MHF
and AHF parameters indicate that the system
has a high level of encapsulation. Similarly, if
the values of PF and NMO parameters are high,
it shows that the system has a high level of
polymorphism. A high value of the RR
parameter expresses that the system has many
reusable classes, while a high value of the SR
parameter states that the system has many
specialized classes. Therefore, the RR and SR
are important parameters to determine the

impact of a modeling and system design
technique in terms of modification aspect.

RESULT AND DISCUSSION
A. System Requirements and Analysis

The first step to employ the use case 2.0
approach is to define the system requirement
and analyse it. The following are the
specifications of the functional requirements:
1. The system allows users to view rainfall data.
2. The system allows users to search rainfall
data.
3. The system allows users to select notification
periods through configuration (30 minutes, hour).
4. The system allows users to receive
notifications for the latest rainfall data.
5. The system allows users to export rainfall
data in csv format.
6. The system allows IoT devices to collect
rainfall data.
7. The system allows IoT devices to store
rainfall data into a database.

For the non-functional system

specifications, they are defined as follows:

1. Data is stored using Firestore in the
 Firebase.
2. Minimum requirement for Android is

 Android 5.0 Lollipop.

Furthermore, each point in the functional

specification needs to be transformed into user
stories to determine the actors and the use
cases. To simplify the determination of the
actors and the use cases, this paper employs
user stories with the pattern of role-feature-
reason [22], as follows:

1. As a user, I want to view rainfall data so
 that I know the rainfall conditions.
2. As a user, I want to search for rainfall data
 so that I can view the data I need.
3. As a user, I want to choose a notification
 period so that I can receive the latest data
 notifications regularly.
4. As a user, I want to receive notifications so
 that I can view rainfall data at a certain time
 without opening the application.
5. As a user, I want to export rainfall data so
 that I can use the data in other
 applications.
6. As an IoT device, I want to collect rainfall
 data so that I can monitor the rainfall
 conditions.
7. As an IoT device, I want to store rainfall
 data so that the collected data can be
 saved into the database.

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 12, Issue 2, July 2023

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 247

After the user story has been described, we are
able to define use cases of the system and their
actors, and then use them to visualize in a use

case diagram for providing an overal big picture
of the rainfall monitoring system. Figure 1 shows
the proposed use case diagram of the rainfall
monitoring sytem.

Figure 1. The Use-Case Diagram for Rainfall Monitoring System

Table 1. Slicing Use Cases

Use-case Use-case Story Use-case Slice

View Rainfall Data Viewing the Latest Data (Basic
Flow)

Succeed to view the latest data

Data cannot be displayed
(Exception)

Fail to view the latest data

Search Rainfall Data Display all data (Basic Flow) Display all data
Display data based on input filter
(Alternate)

Display data according to
parameters

There are no data (Exception) Search empty result
Read Rainfall Data Read rainfall data (Basic Flow) Succeed to read rainfall data

Fail to read rainfall data (Alternate
Flow)

Fail to read rainfall data

Store Rainfall Data Store rainfall data (Basic Flow) Succeed to store rainfall data
Fail to store rainfall data (Alternate
Flow)

Fail to store rainfall data

The next activity is the core of the use-case 2.0
approach where a system must be built in
slices. Each use case presented in Figure 1
should be broken down into use-case slices

(thinner slices) by considering its basic flow,
alternate, and exception flow. The analysis of
the use-case slices for four use case is
demonstrated in Table 1.

A detailed use-case development diagram

based on the Table 1 can be visualized by
illustrating each use-case slice as an extension
of its original use case. As shown in Figure 2,
the use-case slices for the "View Data" and
"Read Rainfall Data" use cases are depicted.

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 12, Issue 2, July 2023

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 248

Figure 2. The Use-Case Slices for View and and
Read Rainfall Data

Figure 3. The Use-case Stories for Read and
View Rainfall Data

After the use-case slices are identified and
defined in the backlog or priority board
development, the next step is to prepare these
use-case slices for further analysis by
creating detailed steps. For example, we
prepare the use-case slice of Succeed and
Fail to View Data, which are extensions of the
View Rainfall Data use case where the user is
defined actor.

The steps of the Succeed to View Data use-

case slice are as follows:

1. User opens the home page.

2. Application connects to the internet.

3. Application searches for the latest data.

4. Data is found.

5. Data is received by the application.

6. Application processes the data.

7. Rainfall information is displayed to the user.

The steps in the "Failed to View Latest Data"

use-case slice are as follows:

1. The user opens the home page.

2. The application is not connected to the

internet.

3. The application displays an error message

to the user.

As for the use case involving the IoT device

actor, for example, the "Successfully Read

Rainfall Data" use case, the analysis of its

steps is as follows:

1. Initialize the IoT device.

2. Read data from the sensor for a specific

period.

3. Calculate the average rainfall data.

The result of the analysis of the steps for the
"Read Data" and "View Data" use-case slices is
modeled visually in Figure 3. In the diagram, for
the "View Rainfall Data" use case, there are
seven steps, and after step 1, an exceptional
condition can occur if the application fails to
connect to the internet.
 After preparing the use-case stories,
each of the use-case slice should be analyzed
one by one, then designed and implemented
them into the system.
 The next step, an activity/swimlane
diagram can be created to model the activities
performed by each object in the system,
referring to the previously analyzed steps. In the
example use case "Viewing Latest Data," there
are three objects with certain roles in the
system: User, IoT Device, and the Application.
The User performs the activity of opening the
application's home page, while the Application
performs activities such as checking the internet
connection, requesting the latest data from the
IoT Device, and displaying the latest rainfall
data to the User. The IoT Device, on the other
hand, performs the activity of collecting rainfall
data from the sensor and providing them to the
Application. Figure 4 presents the "Viewing
Latest Data" activity and the involved objects
through a swimlane diagram.

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 12, Issue 2, July 2023

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 249

Figure 4. The Swimlane for View Data

To analyze and understand each of the use-
case slice in terms of action sequences, a
Sequence Diagram can be used. In the
"Successful Viewing of Latest Data" use case,
the action sequence starts with the User
opening the home page, followed by the
Application checking/connecting to the internet,
making a request for the latest data, and
processing them to display to the User. Figure 5
represents the sequence of data exchange for
the "Successful Viewing Data" use case.

Figure 5. The Sequence diagram for View
Rainfall Information
 The final step in the analysis phase is to
create a conceptual diagram to identify the
classes that may be used in each use-case
slice. For the "Successful Viewing Data" use
case, it is known to consist of the Home Page
class, which is a subclass of the Activity class.
The class is also connected to other classes,
namely the Rainfall class and the
ConnectivityManager class. Activity and
ConnectivityManager are two classes in the
Android platform that are required based on the
target platform in the definition of non-functional
system requirements.

B. System Design and Implementation

In the design phase, we design system
architecture, user interface (UI) for android
platform apps, and the structure of the system
by showing its classes, attributes, operates and
relationship among classes.
 The developed rainfall monitoring

system consists of IoT hardware components,

specifically the NODEMCU platform, and a rain

sensor selected based on the considerations of

the ease of use and cost-effectiveness. It also

involves a mobile device based on the Android

platform. The software components include the

logic codes for processing rainfall data on the

NODEMCU side using the C++/Arduino

programming language, while the logic program

on the Android platform using the Kotlin

programming language. Firebase platform is

used as the data storage for the designed IoT

system. In the design phase, the selection of

Firebase and the Android platform is based on

the defined non-functional specifications of the

analyses phase. Furthermore, to visualize the

various components of the designed system and

how they connected, we design architecture

system which is presented in Figure 6. In the

IoT device design, the output pin of the rain

sensor generates a digital pulse signal using

transistor-transistor logic (TTL). This signal can

be read by the microcontroller as rainfall in

inches or millimeters (mm). The sensor's output

pin is connected to pin D8 on the NodeMCU.

The VCC pin of the rain sensor is connected to

the VU (Voltage USB) pin since the pin outputs

a voltage of 5V, which is required for the sensor

to operate properly.

Figure 6. The System Architecture

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 12, Issue 2, July 2023

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 250

 The UI design is tailored to the Android
platform, which is the target implementation
platform. Figure 7 presents an example of the UI
design for the 'Successful Data Viewing' use
case and the 'Search Specific Data by Time' use
case. When rainfall data is successfully loaded,
the application displays the retrieval date and
time of the data, as well as the rainfall data for a
specific time interval.

Figure 7. UI Design for Display Rainfall
Information.

 In order to view the static structure of
the application and to facilitate mapping activity
from design to the implementation code, the
detailed design is organized in to a class
diagram. The conceptual class diagram in the
analysis phase can be developed by defining in
detail each class, function, attribute, and its
type. Figure 8 illustrates the example of a
section of the class diagram designed for the
'Successful Data Viewing' use case

Figure 8. The Class Diagram for
View Latest Data

 In the class diagram for 'Successful
Data Viewing,' for example, the 'Rainfall' class
has private (-) attributes with types String,
Double, and string/TimeStamp, as well as the
necessary methods for each attribute (set and
get). Command methods, indicated by the prefix
'set' (e.g., setRainstate ()), are defined as
procedures that accept String data, while query
methods, indicated by the prefix 'get' (e.g.,
getRainstate()), are defined as functions that
return String/Double/Timestamp data.
Additionally, the diagram includes some parent
class information, which represents Android
libraries, based on the functions used by the
subclasses.
 In the implementation phase, when the
use-case slices have been analyzed and ready
to be implemented into the target platform.
Then, each of use-case slice is applied one by
one into the system until all the use-cases are
implemented. For the Android platform, the
implementation is done using Kotlin
programming language. Figure 9 presents a
snippet code mapped from the HomeActivity
class design.

Figure 9. Implementation Code in Kotlin for
Viewing Data

IoT device in this designed system
based on a low cost NODEMCU platform, then
the software implementation for the platform is
mapped into the C++/Arduino programming
language. Figure 10 shows a snippet of code
mapped from the Successful Data Reading
class design for the NODEMCU/Arduino
platform.

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 12, Issue 2, July 2023

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 251

Figure 10. Implementation Code in
C++/Arduino Language for Reading Data

C. Evaluation
 In this paper, we perform two evaluation
scenarios. First was conducted to check if the
use-case slices have been implemented
correctly by executing the selected number of
use-cases in a controlled environment. The first
test involves the Successful Sensor Data
Reading use-case, which involves the IoT
device. Figure 11 presents the data successfully
read by the IoT device through the rain sensor
and displayed on the serial monitor. The
successfully read data is then sent by the IoT
device to the Firebase database on the internet
for storage purposes.

Figure 11. Reading Data By IoT Device

Furthermore the testing for the Successful Data
Viewing use-case. In this evaluation, a
Samsung J7 Prime device with Android version
8.1.0 is used. The application reads data from

the Firebase database and displays them on the
mobile device. Figure 12 shows the execution
result of the rainfall monitoring application on
the target platform.

Figure 12. Rainfall monitoring apps on Android
platform

 The second evaluation was conducted
to compare the object-oriented metric properties
between the system using the use-case 2.0
approach and the system without the approach
(ad-hoc). The total number of classes, methods,
visible and non-visible attributes, overridden
methods, newly created methods, and the
number of subclasses in the application codes
are counted and measured. Table III presents
the comparison results of the metric calculations
with three parameters such as encapsulation,
polymorphism, and reusability.

Table 2. OO Metrics Evaluation System with
and without Use Case

System
Label

Rainfall Monitoring System

With use case
2.0

Without use
case (ad-hoc)

MHF 0.125 0.1515151515

AHF 0.5760869565 0.7777777778

PF 0.5208333333 1

NMO 24 19

RR 0.3513513514 0.1891891892

SR 0.5945945946 0.2702702703

As shown in Table 2, it can be observed
that, specifically for the reusability parameter,
the Reuse Ratio (RR) and Specialization Ratio
(SR), which are important indicators of the Use-
Case 2.0 approach, have significantly higher
values compared to the ad-hoc method. The
monitoring system for rainfall, modeled using
the Use-Case 2.0 approach, has an RR value of
0.35 and an SR value of 0.59, while the ad-hoc
method has an RR value of 0.18 and an SR
value of 0.27. This indicates that the Use-Case
2.0 approach enables the system components
to be more specific or high cohesive and
independent or loose coupling, thus achieving

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 12, Issue 2, July 2023

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 252

the goal of breaking down the system into
smaller parts (use-case slices) that are easier to
develop and implement independently.

CONCLUSION
 Based on the evaluation of the
implemented code for the Use Cases of
Reading, Viewing, and Searching for Rainfall
Data, can be executed on the target platform.
Furthermore, the measurement of the quality
aspect using object-oriented metrics in the
designed system, specifically the important
parameters for the Use-Case 2.0 approach, has
values of RR=0.35 and SR=0.59, while the
development of the system without the
approach has values of RR=0.18 and SR=0.27.
This indicates that the implementation of the
Use-Case 2.0 approach, which divides the
system into small and independent parts namely
use-case slices, can have an impact on the
ease of modifying the IoT system.

REFERENCES

[1] J. Qiu, Z. Tian, C. Du, Q. Zuo, S. Su, and

B. Fang, “A survey on access control in
the age of internet of things,” IEEE
Internet Things J., vol. 7, no. 6, pp.
4682–4696, 2020.

[2] M. A. Zamora-Izquierdo, J. Santa, J. A.
Martínez, V. Martínez, and A. F.
Skarmeta, “Smart farming IoT platform
based on edge and cloud computing,”
Biosyst. Eng., vol. 177, pp. 4–17, 2019.

[3] J. Muangprathub, N. Boonnam, S.
Kajornkasirat, N. Lekbangpong, A.
Wanichsombat, and P. Nillaor, “IoT and
agriculture data analysis for smart farm,”
Comput. Electron. Agric., vol. 156, no.
June 2018, pp. 467–474, 2019.

[4] K. S. Uray Ristian, Ikhwan Ruslianto,
“Sistem Monitoring Smart Greenhouse
pada Lahan Terbatas Berbasis Internet
of Things (IoT),” JEPIN (Jurnal Edukasi
dan Penelit. Inform., vol. 8, no. 1, pp.
87–94, 2022.

[5] P. K. Tripathy, A. K. Tripathy, A.
Agarwal, and S. P. Mohanty, “MyGreen:
An IoT-Enabled Smart Greenhouse for
Sustainable Agriculture,” IEEE Consum.
Electron. Mag., vol. 10, no. 4, pp. 57–62,
2021.

[6] T. Nguyen Gia et al., “Energy efficient
fog-assisted IoT system for monitoring
diabetic patients with cardiovascular
disease,” Futur. Gener. Comput. Syst.,
vol. 93, pp. 198–211, 2019.

[7] A. Rghioui, A. Naja, J. L. Mauri, and A.
Oumnad, “An IoT Based diabetic patient
Monitoring System Using Machine
Learning and Node MCU,” J. Phys. Conf.
Ser., vol. 1743, no. 1, 2021.

[8] K. U. Ariawan, “Penerapan IoT untuk
Sistem Kendali Jarak Jauh Peralatan
Listrik Rumah Tangga Berbasis
RASPBERRY PI,” J. Nas. Pendidik. Tek.
Inform., vol. 9, no. 3, p. 292, 2020.

[9] I. Sommerville, Software Engineering,
9th Edition. Addison-Wesley, 2011.

[10] G. Guerrero-Ulloa, C. Rodríguez-
Domínguez, and M. J. Hornos, “Agile
Methodologies Applied to the
Development of Internet of Things (IoT)-
Based Systems: A Review,” Sensors,
vol. 23, no. 2. 2023.

[11] D. Pandit, S. Chowdary, P. S. R.
Patnaik, B. Shaharkar, and A. Surde,
“Agile Methodology for IoT Application
Development and Business
Improvisation,” in Smart Trends in
Computing and Communications, 2022,
pp. 601–608.

[12] B. Costa, P. F. Pires, and F. C. Delicato,
“Modeling IoT Applications with
SysML4IoT,” Proc. - 42nd Euromicro
Conf. Softw. Eng. Adv. Appl. SEAA
2016, pp. 157–164, 2016.

[13] B. Costa, P. F. Pires, and F. C. Delicato,
“Modeling SOA-Based IoT Applications
with SoaML4IoT,” IEEE 5th World Forum
Internet Things, WF-IoT 2019 - Conf.
Proc., pp. 496–501, 2019.

[14] M. T. B. Geller and A. A. de M. Meneses,
“Modelling IoT Systems with UML: A
Case Study for Monitoring and Predicting
Power Consumption,” Am. J. Eng. Appl.
Sci., vol. 14, no. 1, pp. 81–93, 2021.

[15] I. Jacobson, I. Spence, and B. Kerr, “The
hub of software development,” Commun.
Acm, vol. 59, no. 61, pp. 94–123, 2016.

[16] H. Gomma, Software Modeling &
Design. 2011.

[17] B. Mehboob, C. Y. Chong, S. P. Lee,
and J. M. Y. Lim, “Reusability affecting
factors and software metrics for
reusability: A systematic literature
review,” Softw. - Pract. Exp., vol. 51, no.
6, pp. 1416–1458, 2021.

[18] U. Kaur and G. Singh, “A Review on
Software Maintenance Issues and How
to Reduce Maintenance Efforts,” Int. J.
Comput. Appl., vol. 118, no. 1, pp. 6–11,
2015.

[19] N. Padhy, S. Satapathy, and R. P. Singh,
“State-of-the-art object-oriented metrics

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 12, Issue 2, July 2023

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 253

and its reusability: A decade review,”
Smart Innov. Syst. Technol., vol. 77, no.
January, pp. 431–441, 2018.

[20] N. Nwe and E. Thu, “Measuring
modifiability in model driven
development using object oriented
metrics,” Adv. Sci. Technol. Eng. Syst.,
vol. 3, no. 1, pp. 244–251, 2018.

[21] R. Harrison, S. J. Counsell, and R. V.
Nithi, “An evaluation of the MOOD set of
object-oriented software metrics,” IEEE
Trans. Softw. Eng., vol. 24, no. 6, pp.
491–496, 1998.

[22] I. K. Raharjana, D. Siahaan, and C.
Fatichah, “User Story Extraction from
Online News for Software Requirements
Elicitation: A Conceptual Model,” JCSSE
2019 - 16th Int. Jt. Conf. Comput. Sci.
Softw. Eng. Knowl. Evol. Towar. Singul.
Man-Machine Intell., pp. 342–347, 2019.

	APPLYING USE CASE 2.0 APPROACH TO THE DEVELOPMENT OF IOT-BASED RAINFALL MONITORING SYSTEM
	Mohammad Fajar1, Ferian Bagus Chandra2, Hamdan Arfandy3
	1,2Teknik Informatika, STMIK Kharisma Makassar
	3Teknik Informatika, Universitas Islam Makassar
	Abstract
	Keywords : Use-Case 2.0, IoT, IoT Modeling, Rainfall Monitoring System, Object Oriented Metrics
	INTRODUCTION
	METHOD
	RESULT AND DISCUSSION
	Figure 1. The Use-Case Diagram for Rainfall Monitoring System
	Figure 2. The Use-Case Slices for View and and Read Rainfall Data
	CONCLUSION
	REFERENCES

