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Abstract 
This study aims to enhance rice production prediction through a comparative analysis of machine learning 
models utilizing climate variables. Eight models were assessed on a predetermined dataset, with Support 
Vector Regression (SVR) emerging as the top performer. Following the identification of significant climate 
variables influencing rice production, the models underwent evaluation using two hyperparameter 
approaches: random search and manual tuning. SVR outperformed other models, achieving impressive 
metrics with MAE 0.180, MSE 0.186, RMSE 0.431, and an exceptionally low MAPE of 0.020. Key factors 
influencing rice production included productivity and area, along with humidity, rainfall, temperature, wind 
velocity, and sunshine duration. Favorable conditions for rice output encompassed low humidity, 
moderate rainfall, increased wind speed, and prolonged sunshine, while rainfall and temperature 
exhibited minimal impact. The success of random search emphasizes the importance of effective 
hyperparameter tuning. This research provides valuable insights for enhancing rice production prediction. 
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INTRODUCTION 

Agriculture, a cornerstone of the global 
economy, plays a vital role in sustaining food 
production, with a particular emphasis on rice 
cultivation to meet worldwide nutritional 
demands[1][2]. As technological advancements, 
particularly in machine learning, gain 
prominence, their integration into agricultural 
practices becomes pivotal for enhancing 
productivity. Accurate prediction of rice yield 
serves as a crucial tool for governments, 
researchers, and farmers to formulate effective 
agricultural policies. The impact of climate 
change poses a significant challenge to rice 
cultivation, manifesting correlations between 
climate variability and rice output, influencing 
temperature, rainfall, and growing season 
patterns[3][4]. 

To achieve precise rice production 
forecasts, the development of a proficient 
prediction model capable of handling climate 
data as input is imperative. Machine learning, a 
subset of artificial intelligence, has shown 
promise in interpreting extensive data sets to 
provide more accurate predictions. Despite 
various machine learning techniques explored 
for rice production prediction using climatic data, 
a comprehensive comparison of these 
algorithms is yet to be undertaken. This study 

aims to fill this gap by conducting a thorough 
comparative analysis of different machine 
learning techniques employed in rice production 
prediction, specifically considering climatic data. 
Recent research underscores the increasing 
interest in utilizing machine learning, such as 
Random Forest and Artificial Neural Networks 
(ANN), in predicting rice harvests and rice 
yield[5][1][6]. Emphasizing climatic data has 
been shown to enhance prediction accuracy. 
Regionally localized models have also proven 
more effective, underscoring the importance of 
incorporating local climatic variables in 
prediction model construction[7][8][9]. 

This study addresses the existing gap 
by conducting a comprehensive comparative 
examination of various machine learning 
methods for predicting rice production in 
conjunction with climate data. Data on rice 
production and meteorological factors, including 
temperature, humidity, and rainfall, were 
collected from reputable sources in ten 
Indonesian provinces on Sumatra Island.  

The model's performance was 
evaluated using a Random Forest Regressor, 
Support Vector Regressor, Decision Tree, 
XGBoost, Gradient Boosting Machine, K-
Nearest Neighbors, and Artificial Neural 
Network. Variable significance evaluation and 
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data preparation are critical aspects considered 
in this study. Model efficacy was assessed using 
performance metrics such as Mean Absolute 
Percentage Error (MAPE) and Mean Absolute 
Error (MAE). The study aims to provide a 
reliable decision-making model for stakeholders, 
including farmers, with practical implications. By 
illuminating the merits of various machine 
learning algorithms, it also contributes to the 
development of sustainable agricultural policies. 
Anticipated outcomes include advancements in 
the field through a thorough comparison of 
machine learning approaches, offering valuable 
insights to inform the development of 
sustainable agricultural policies, particularly in 
the domain of rice production forecasts. 

 
METHOD 
The analysis procedure and approach are 
explained in Figure 1. 
 
Data Collection and Study Area 

Based on the availability of data on rice 
production in Indonesia, the dataset used to 
support this study was gathered. In this 
instance, data collection was restricted to the 
island of Sumatra, which has ten provinces: 
Aceh, North Sumatra, West Sumatra, Riau, Riau 
Islands, Jambi, South Sumatra, Bengkulu, 
Lampung, and Bangka Belitung Islands (Figure 
2). Complete rice production data for the 
province from 2006 to 2015 may be found at: 

 https://www.bps.go.id and 

 https://tanamanpangan.pertanian.go.id.  
Climate variables from: 

 https://dataonline.bmkg.go.id, 

 https://climateserv.servirglobal.net/, and 

 https://www.ncei.noaa.gov/  
were collected throughout the same period. 
Three distinct sources of data were combined 
based on Figure 2. Eleven variables are 
generated from the integrated data, which 
includes statistics on climate, and rice 
production. The eleven factors in research are: 
year, province, commodity, output, productivity, 
harvest area, humidity, wind velocity, 
temperature, sunshine duration, and rainfall. 
The total data used in this study is 700 
rows/records. 
Data Preprocessing and Exploratory Data 
Analysis 

Data pre-processing involves steps 
such as missing value handling, outlier removal 
and transformations or feature selection to 
prepare data for analysis. Meanwhile, 
Exploratory Data Analysis (EDA) involves using 
descriptive statistics and data visualisations 
such as histograms and correlation matrices to 
understand patterns, relationships, and trends in 
the dataset. Both are critical to validating data, 
ensuring integrity, and providing key insights 
before proceeding to further analysis or 
modelling. 
 
Data Partition 

To train and assess machine learning 
models, data partitioning is splitting a dataset 
into training and test sets, usually via 
randomization. By ensuring that models are 
assessed on untested data, this procedure 
helps to avoid overfitting and offers a 
trustworthy indicator of how well a model 
generalizes.  

 

 
Figure 1. Research Methodology 
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Figure 2. Location Map of The Study and Variables 

 
A careful compromise is struck between 

a sufficient training set and a reliable evaluation 
of the test set when determining the size of the 
subsets. For training data, the percentage size 
is 70%, and for testing data, it is 30%. A crucial 
stage in creating a very successful model based 
on some experimental data is training [10]. This 
ratio is a widely used conversion that performs 
well in a variety of scenarios because overfitting 
occurs when a model is trained with an 
excessive amount of data. 
 
Predicting Model Using Machine Learning 

To predict rice production given climate 
data, this study uses eight machine learning 
models: GLM, RFR, XGBoost, SVR, Decision 
Tree Regression, GBM, KNN, and ANN. In 
order to gain a comprehensive grasp of the 
intricate relationship between rice production 
and climate, they are used in situations requiring 
linear interpretation, managing complexity and 
non-linear patterns, spatial interpretation and 
dependency, high complexity, and iterative 
improvement. 
 
Random Forest Regression 

Decision trees are used in Random 
Forest Regression, a machine learning 
technique, to do regression tasks. It creates 
multiple decision trees and averages their 
projections to reach the desired outcome. This 
method helps to increase the accuracy of the 
regression model and decrease overfitting.[1]. 
Numerous fields, including economics, 
healthcare, and environmental research, 
frequently use Random Forest Regression. It 
has been applied to climate modeling and 
ecological forecasting in environmental studies. 
[11].  

All things considered, Random Forest 
Regression is an effective tool for regression 
problems, offering robustness against overfitting 

and precise predictions. The Random Forest 
Regression (RFR) method starts with creating a 
forest of uncorrelated trees. Each tree is 
developed using a randomized subset of 
predictor variables. The trees are averaged 
together after being allowed to grow to their 
greatest potential without any pruning[12]. 𝑦 = 1𝑁 ∑ 𝑓𝑖𝑁𝑖=1 (𝑥) (1) 

where 𝑥 is the feature vector of the newly 

predicted observation, 𝑓𝑖 is the regression 
function of tree 𝑖, 𝑁 is the number of decision 

trees, and 𝑦 is the prediction's output value. 
 
Support Vector Regressor 

The machine learning method known as 
Support Vector Regression (SVR) applies the 
fundamental concepts of support vector 
machines to regression issues. It is frequently 
used to create decision boundaries in non-linear 
space by learning from training data[13][14]. 
The formulation for liner support vector 
regression that was used in this investigation is 
[15]. 𝑦 = ∑(𝛼𝑛 − 𝛼𝑛∗ )𝑁

𝑛=1 (𝑥𝑛 . 𝑥) + 𝑏 

 

(2) 

Where 𝑥𝑛  and 𝑥𝑛 . 𝑛 represent the dot product 

and 𝛼𝑛  and 𝛼𝑛∗   are nonnegative multipliers 
matching to each observation 
 
Decision Treen Regression 

Decision Tree Regression is one of the 
most potent machine learning algorithms 
because it can accurately depict intricate, non-
linear relationships between input and output 
variables[16][17]. Using particular rules or 
criteria, the program separates the data into 
subsets in this regression approach. With the 
following formulation, Decision Tree Regression 
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is quite similar to the Classification Tree used 
for Regression.[18]. 𝑦 = 𝑓(𝑥, 𝜃), 𝑂 𝜖 𝑅 (3) 
 
where 𝑥 is the new observation, 𝑦 is the output 

that corresponds to the set of real numbers 𝑅, 𝑓(. ) is the regression function, and 𝜃 is the 
regression function's parameter set. 
 
XGBoost Regression 

A well-liked gradient-boosting 
framework called XGBoost uses a tree-based 
learning mechanism. With millions of examples 
and features, it can handle large-scale datasets 
because to its scalable and efficient design. Its 
ability to handle categorical or numeric 
characteristics directly, without the need for one-
hot encoding or other preprocessing 
procedures, is one of its important strengths[11]. 
The following formula can be used to describe 
the XGBoost regression model. 𝑦 = ∑ 𝑓𝑖𝑁𝑖=1 (𝑥; 𝜃𝑖) (4) 

 
Where 𝑓𝑖 is the regression function of tree 𝑖, 𝑥 is 
the feature vector of the new predicted 
observation, 𝑁 is the number of decision trees, 𝑦 is the prediction's output value, and 𝜃 is tree 
i's parameter. 
 
Gradient Boosting Machine 

Ensemble learning is a subset of 
machine learning algorithms, including Gradient 
Boosting Machine. Using multiple models, 
ensemble learning increases prediction 
performance and accuracy[19][20]. Gradient 
boosting machines, or GBMs, combine decision 
trees iteratively via an additive model, lowering 
the loss function by gradient descent to 
minimize prediction errors. This improves weak 
models [21]. 𝐹𝑛(𝑥𝑡) = ∑ 𝑓𝑖𝑛𝑖=1 (𝑥𝑡) (5) 

 
A decision tree (regression tree) is represented 
by each 𝑓𝑖(𝑥𝑡). By estimating the new decision 
tree 𝑓𝑛+1(𝑥𝑡)  using the following equation, the 
ensemble of trees is constructed successively. 
In cases where the differentiable loss function 𝐿(. ). 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑡 . 𝐹𝑛(𝑥𝑡) + 𝑓𝑛+1𝑡 (𝑥𝑡)) (6) 

 
K-Nearest Neighbors Regression 

A well-liked machine learning approach 
for classification and regression applications is 
K-Nearest Neighbors (KNN). Its foundation is 

the idea of locating a data point's closest 
neighbors and forecasting information about 
them based on their value or class[22][23]. In 
KNN regression, euclidean distances are 
evaluated first, and then the distance level. By 
determining the optimal K value, the algorithm 
determines the values that are closest. It 
determines the inverse distance average with its 
neighbors[22]. 𝑦 = 1𝑘 ∑ 𝑦𝑖𝑘𝑖=1  (7) 

 
where 𝑦𝑖 is the output value of the 𝑖 nearest 
neighbor, 𝑘 is the number of nearest neighbors 

utilized in the prediction, and 𝑦 is the expected 
output value. 
 
Artificial Neural Network 

Three layers make up a typical artificial 
neural network's architecture: input, hidden, and 
output layers. Backpropagation is a crucial 
learning technique used during training[23]. 
Artificial neural networks (ANNs) are efficient for 
predictive modeling in agriculture and various 
domains, adept at handling both linear and non-
linear correlations in time series data. 
Comprising interconnected layers, input layer 
with nodes, output layer of neurons, and hidden 
layers with one to three layers of neurons it 
utilizes weighted links to represent numerical 
values.[6].  ℎ𝑖 =  𝜎 (∑ 𝑉𝑖𝑗𝑋𝑗

𝑁
𝑗=1 + 𝑇𝑖ℎ𝑖𝑑) (7) 

 
Where 𝑁 is the number of input neurons, 𝜎 is 

the activation function, 𝑉𝑖𝑗 is the weight,  𝑥𝑗 is the 

neuron input, and 𝑇𝑖ℎ𝑖𝑑  is the threshold term for 

the hidden neurons. 
 
Hyperparameter Search 

This study's machine learning model 
tuning procedure makes use of both the manual 
hyperparameter search method and random 
search. Hyperparameter combinations are 
chosen at random from a predetermined search 
space in a random search[24]. Five-fold cross 
validation was used to evaluate the efficacy of a 
random search to yield a more dependable 
estimate of the hyperparameter value. The goal 
is to find an efficient or ideal configuration by 
methodically examining a wide range of 
hyperparameter combinations.[25]. The training 
data that was previously partitioned is used in 
the hyperparameter search procedure. 
 
Evaluation Model 
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During the assessment stage, a 
comprehensive examination of several 
regression techniques and performance 
indicators was provided, providing the user with 
option in choosing accuracy parameters that are 
pertinent to them. The common error rate 
measures used in applied machine learning are 
described in this section. The average of the 
absolute difference between the expected and 
actual values is called the mean absolute error, 
or MAE. represents the average mistake 
magnitude without taking the direction of the 
faults into account. 𝑀𝐴𝐸 =  1𝑛 ∑ |𝑦𝑖 − 𝑦′𝑖|𝑛𝑖=1  (8) 

 
The average of the squared difference between 

the expected and actual values is known as the 

mean squared error, or MSE. increases the 

weith of bigger errors, making it more 

susceptible to outliers. 𝑀𝑆𝐸 =  1𝑛 ∑ (𝑦𝑖 − 𝑦′𝑖)2𝑛𝑖=1  (9) 

 

The square root of the average squared 

discrepancies between the expected and actual 

values is known as the root mean squared error, 

or RMSE. offers a comprehensible scale similar 

to the initial data. 

𝑅𝑀𝑆𝐸 =  √1𝑛 ∑ (𝑦𝑖 − 𝑦′𝑖)2𝑛𝑖=1  (10) 

 

The average of the absolute percentage 

discrepancies between the expected and actual 

values is known as the mean absolute 

percentage error, or MAPE. shows the typical 

percentage difference between the expected. 

𝑀𝐴𝑃𝐸 =  1𝑛 ∑ |𝑦𝑖 − 𝑦′𝑖𝑦𝑖 |𝑛𝑖=1 × 100 (11) 

 
RESULT AND DISCUSSION 

After analyzing collected and 
preprocessed data, it was found that there are 
700 observations and 22 NA's in both food crop 
and climate datasets. The combined dataset, 
consisting of rice crop and climate data, 
comprises 100 rows/records and 8 variables. 
Figure 3 displays the distribution of 
preprocessed data. In the exploration stage of 
data analysis, the findings are as follows: a) 
North Sumatra has the highest rice production, 
averaging 749157.70 tons (Figure 4). b) 
Pearson correlation (Figure 5) indicates a 
strong, significant negative correlation between 
wind velocity (-0.532) and production, humidity 
(-0.183) and production, a weak positive 
correlation (0.196) between rainfall and 
production, and a weak negative correlation (-
0.183) between humidity and production. 
Temperature (0.003) and sunshine duration 
(0.045) show very weak correlations with 
production. Area (0.914) and productivity 
(0.785) are strongly positively correlated with 
production.  

In order to lessen the weight of highly 
correlated variables, ridge regression analysis 
was performed in this study in order to 
demonstrate multicollinearity due to the 
relatively small sample size in the data. 
Therefore, it is anticipated that more stable 
estimates would be produced later on in the 
analytical and model-building process. Based on 
the regression model for 7 variables selection ( 
predictor variables) that are thought to affect the 
response variable (production) and cross 
validation, it was found that the minimum 
lambda value or MSE evaluation was 0.237, and 
lambda 1se was 2.663 with the number of 
predictor variables fixed 7 and the predictor 
variable coefficient is not zero. So, it can be 
concluded that these 7 variables contribute 
significantly and are not eliminated in the model 
selection. The 7 variables predictor maintained 
include: area, productivity, humidity, rainfall, 
temperature, wind velocity, and sunshine 
duration.  
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Figure 3. Data Distribution 

 
Figure 4. Comparison of Average Rice Production 
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Figure 5. Correlation Multiple Variables 
 

The next stage is to use machine 
learning to create a prediction model after 
preprocessing and data exploration. Setting up 
the experimental setup and the necessary 
hyperparameters is the initial step. Table 1 
displays the hyperparameters for each model 
based on the experimental case. There are two 
components to the experimental scenario: 
experiment A and experiment B. Experiment A 
uses 5-fold cross-validation to evaluate the 
hyperparameters obtained using the random 
search technique, while Experiment B tests the 
manually generated hyperparameters. Anticipated 
benefits from conducting both experiments 
include the evaluation of the quality and accuracy 
of the prediction model created. The goal of this 
thorough evaluation is to shed light on the ideal 
ratio between model performance and balance. 

The outcomes of the predictions made for 
rice production for each model tested using 
prepared experimental situations are described 
below. The model's ability to predict real values 
can be thoroughly examined by examining the 
model performance using four key metrics: MAE, 
MSE, RMSE, and MAPE. With a greater 
emphasis on significant errors and consideration 
of absolute, relative, and squared errors, this 
analysis offers a thorough picture of the model's 
prediction quality. Based on the results of 
performance evaluation from the model with both 
experiments using testing data 30% in Table 2 
and Table 3 it can be explained that: The GLM 
model with the two experiments carried out has 
no difference in performance, this can be seen 
from the comparison plot of prediction results and 

actual values in Figure 6. With MAE values of 
0.438, MSE 0.465, RMSE 0.682, and MAPE 
0.049. Hyperparameter tuning on the model has 
no significant effect, this may be because the 
model has provided good and stable 
performance.  

For experiments on the RF Regression 
model, it was found that the performance of 
models with hyperparameter A was better than 
the hyperparameter B model. This can be seen 
from the evaluation metrics MAE 0.522, MSE 
0.944, RMSE 0.971, and MAPE 0.067. In Figure 
7 it can be seen that by adding n_estimators or 
the number of decision trees to 200 based on the 
results of random search hyperparameter tuning 
results in better model performance. The 
difference between the MAE values of the two 
hyperparameter configurations is significant with 
the mean of the MAE (mean of x) being 0.5475 
with a p-value of 0.02963.  

It was discovered through SVR model 
experiments that SVR models using random 
search or hyperparameter A performed 
exceptionally well. The values of MAE 0.180, 
MSE 0.186, RMSE 0.431, and MAPE 0.020 all 
demonstrate this. In contrast to the radial kernel in 
hyperparameter B, Figure 8 illustrates how 
precisely the linear kernel is used in the model. 
With a very low error rate, the SVR model 
performs exceptionally well in hyperparameter A 
for this prediction of rice production while using a 
linear kernel. A large error rate is caused by the 
usage of radial kernels in hyperparameter B; this 
could be because the training model employed a 
very small quantity of data.  

 
Table 1. Hyperparameter Experiment 

 

Machine 
Learning/Model 

Hyperparameter Experiment Scenario 

A B 

GLM family Gaussian Gaussian 
 epsilon 1e-8 1e-5 
 maxit 100 200 
Random Forest n_estimators 100 200 
 max_depth NULL NULL 
 min_sample_split 2 2 
 min_sample_leaf 1 1 
 mtry sqrt log2 
SVR kernel linear radial 
 C 1.33548 0.1 
 epsilon 0.1 0.01 
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 gamma 0.01471221 0.1 
XGBoost objective reg: squarederror reg: squarederror 
 booster gbtree gbtree 
 nrounds 100 200 
 eta 0.3 0.1 
GBM distribution gaussian gaussian 
 n. tree 100 200 
 Interaction.depth 3 5 
 shrinkage 0.1 0.01 
 cv.fold 5 5 
KNN K 5 7 
 weight Uniform Distance 
Decision Tree max_depth NULL NULL 
 min_samples_split 2 2 
 min_samples_leaf 1 1 
 cp 0.007 0.001 
ANN hidden_neurons c (5,2) c (5,2) 
 epochs 100 50 
 batch_size 32 64 
 learning_rate 0.001 0.001 
 activation linear linear 

 
Table 2. Evaluating Metrics with Hyperparameter A 

 

No Model MSE RMSE MAE MAPE 

1 GLM 0.4658171 0.6825080 0.4280718 0.04938833 
2 Random Forest 0.9440180 0.9716059 0.5223369 0.06784828 
3 SVR 0.1864071 0.4317489 0.1808325 0.02012520 
4 XGBoost 1.8617017 1.3644419 0.4177796 0.06290435 
5 GBM 1.1664109 1.0800051 0.6295821 0.07927708 
6 KNN 1.2513477 1.1186366 0.7278808 0.08698134 
7 ANN 2.4463306 1.5640750 1.1109724 0.12141988 
8 Decision Tree 5.0648364 2.2505191 0.8407432 0.11916796 
 

Table 3. Evaluating Metrics with Hyperparameter B 
 

No Model MSE RMSE MAE MAPE 

1 GLM 0.4658171 0.682508 0.4280718 0.04938833 
2 Random Forest 1.2641199 1.124331 0.5732929 0.07653533 
3 SVR 5.0526672 2.247814 1.1970930 0.16093730 
4 XGBoost 1.8617017 1.364442 0.4177796 0.06290435 
5 GBM 2.4422419 1.562767 0.8722005 0.11365346 
6 KNN 1.2513477 1.118637 0.7278808 0.08698134 
7 ANN 2.0603179 1.435381 1.0334684 0.11184952 
8 Decision Tree 4.9920981 2.234300 0.7415292 0.11009584 
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(Hyperparameter A) (Hyperparameter B) 
Figure 6. Comparison of GLM Model Results 

 
When using hyperparameter B, DTR 

models perform better than when using 
hyperparameter A, which is the result of random 
search. The MAE value of 0.741, MSE of 4.99, 
RMSE of 2.234, and MAPE of 0.110 all support 
this. The usage of cp = 0.001 in a DTR model 
with hyperparameter B exhibits better 
predictability than cp = 0.007, as seen in Figure 
9. The mean of the MAE (mean of x) is 0.7905 
with a p-value of 0.03981, indicating a 
significant difference between the MAE values 
of the two hyperparameter setups. 

The performance of the XGBR model 
with hyperparameter A is indistinguishable from 
that of the hyperparameter B model. This fact is 
evident from the recorded values of MAE 0.417, 
MSE 1.861, RMSE 1.364, and MAPE 0.062, all 
of which are identical. Figure 10 visually 
confirms the absence of any notable disparity 
between the predicted outcomes produced by 
the two hyperparameters. It has been 
determined that employing the same learning 
rate (eta) value and a large number of iterations 

(nround) for hyperparameter B does not yield 
any significant advantages. 

Experiments on the GBM model, it was 
found that the performance of the GBM model 
with hyperparameter A or random search was 
good. This can be seen from the value of MAE 
0.629, MSE 1.166, RMSE 1.080, and MAPE 
0.079. In Figure 11 it can be seen that the 
increase in n. tree = 200 and shrinkage = 0.01 in 
hyperparameter B does not provide significant 
performance. 

Experiments on the KNN model, it was 
found that the performance of the KNN model 
with hyperparameter A and hyperparameter B 
was the same. This can be seen from the value 
of MAE 0.727, MSE 1.251, RMSE 1.118, and 
MAPE 0.086. In Figure 12 it can be seen that 
the use of weights = distance in hyperparameter 
B does not provide significant performance. This 
can happen because there is no significant non-
liner trend in the data, so it does not have a 
significant impact compared to weight = uniform.

 

 
 

 

(Hyperparameter A) (Hyperparameter B) 
Figure 7. Comparison of RF Model Results 
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(Hyperparameter A) (Hyperparameter B) 
Figure 8. Comparison of SVR Model Results 

 

 
 

 

(Hyperparameter A) (Hyperparameter B) 
Figure 9. Comparison of DT Model Results 

 
  

 

 
 

 

(Hyperparameter A) (Hyperparameter B) 
Figure 10. Comparison of XGB Model Results 
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(Hyperparameter A) (Hyperparameter B) 
Figure 11. Comparison of XGB Model Results 

 

 
 

 

(Hyperparameter A) (Hyperparameter B) 
Figure 12. Comparison of KNN Model Results 

 
The performance of the ANN model with 

hyperparameter B is better than hyperparameter 
A. This can be seen from the values of MAE 
1.033, MSE 2.060, RMSE 1.435, and MAPE 
0.111. In Figure 13 it can be seen that the use 
of epoch = 100 in hyperparameter A based on 
random search does not provide performance 
improvement. Although statistically the 

difference from the mean MAE (mean of x) 
value of the two hyperparameters is 1.0715 with 
a p-value of 0.02286 significant. This could 
occur due to the limited amount of data used for 
model training; perhaps with a larger dataset, 
performance might differ even with the same 
epoch. 

 

 
 

 

(Hyperparameter A) (Hyperparameter B) 
Figure 13. Comparison of ANN Model Results
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𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  −0.0458 + 0.8844 ∗ 𝑎𝑟𝑒𝑎 + 0.1542 ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 + 0.013 ∗ 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 − 0.022∗ ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 + 0.022 ∗ 𝑤𝑖𝑛𝑑𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 − 0.013 ∗ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 0.021∗ 𝑠𝑢𝑛𝑠ℎ𝑖𝑛𝑒𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

(12) 

 

 
Figure 14. Important Variables of the SVR Model 

 
The outcomes demonstrated that, when 

compared to seven other models, the SVR 
model performed exceptionally well in predicting 
rice production. The model was successful in 
pinpointing the critical variables in Figure 14 that 
have a significant impact on rice output, with 
area and productivity variables being the most 
influential. The model's regression equation (12) 
gives a general picture of how the variables 
interact to effect production. Analysis of climate 
variables showed that wind speed and sunshine 
duration had a beneficial effect on output. 
Variables related to temperature and 
precipitation have comparatively little effect on 
output, whereas variables related to humidity 
have a major detrimental effect. With SVR as 
the top model, these findings offer insightful 
information for making decisions about raising 
rice output.  
 
CONCLUSION 

Based on the results of comparison and 
evaluation on 8 machine learning models tested 
on rice production datasets and using climate 
variables, it was found that the Support Vector 
Regression (SVR) model with hyperparameter 
random search performed very well with low 
values for all evaluation metrics. The SVR model 
has a very low MAPE value of 0.020, MAE value 
of 0.180, MSE 0.186, and RSME of 0.431. The 
SVR model successfully identified that area and 
productivity variables showed a very important 
and significant influence on production, while 

climate variables such as sunshine duration, 
wind velocity and rainfall also played an 
important role. In planning rice production, close 
monitoring of these factors is needed, especially 
for humidity and temperature variables because 
they have a negative impact even though they 
are low. SVR models can be an effective tool 
with good environmental management to support 
more accurate production predictions.   

Future work can carry out transfer 
learning related to the model that has been 
generated to predict the production of other 
types of food crops and develop approaches in 
the model to adapt to different kinds of tasks and 
datasets so that it can work better in a new 
learning context. 
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