
ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 3, December 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 471

DETECTION OF UDP FLOODING DDOS ATTACKS ON IOT
NETWORKS USING RECURRENT NEURAL NETWORK

Warcita1, Kurniabudi2, Eko Arip Winanto3

1,2,3Faculty of Computer Science, Universitas Dinamika Bangsa, Jambi, Indonesia

email: waaarcitaaa@gmail.com1, kurniabudi@unama.ac.id2, ekoaripwinanto@unama.ac.id 3

Abstract

Internet of Thing (IoT) is a concept where an object can transfer data through a network without requiring
human interaction. Complex IoT networks make it vulnerable to cyber attacks such as DDoS UDP Flood
attacks, UDP Flood attacks can disrupt IoT devices. Therefore, this study proposes an attack detection
method using a deep learning approach with the Recurrent Neural Network (RNN) method. This study uses
Principle Component Analysis (PCA) to reduce the feature dimension, before learning using RNN. The
purpose of this study is to test the combined performance of the PCA and RNN methods to detect DDoS
UDP Flood attacks on IoT networks. The testing in this study used 10 datasets sourced from CICIOT2023
containing UDP Flood and Benign DDoS traffic data, and the testing was carried out using three epoch
parameters (iterations), namely 10, 50, and 100. The test results using RNN epoch 100 were superior,
showing satisfactory performance with an accuracy value of 98%, precision of 99%, recall of 99%, and f1-
score of 99%. Based on the experimental results, it can be concluded that combining PCA and RNN is able
to detect UDP Flooding attacks by showing high accuracy.

Keywords : DDoS, UDP Flood, IDS, Deep Learning, RNN

Received: 03-06-2024 | Revised: 28-09-2024 | Accepted: 02-11-2024
DOI: https://doi.org/10.23887/janapati.v13i3.79601

INTRODUCTION

Internet of things or commonly known as
IoT is a concept where an object can transfer data
over a network without the need for human
interaction. With the development of IoT
technology in the near future it will become
something commonly used in the future[1]. The
development of IoT is often interpreted by the
term smart integrated with existing and
conventional infrastructure, such as smart city,
smart health, smart transportation, and smart
home[2].

The presence of IoT makes it easier and
speeds up the process of interaction between
humans and objects. IoT can be applied in
various fields including health, industry,
automotive and others[3]. The application of IoT
in everyday life, for example, a remote control that
can notify the owner via short message about the
use of the AC in their house which has not been
turned off when the owner is away from home,
another example is if there is a gas leak at home,
the home owner will receive a warning via direct
message automatic[4].

However, with all the convenience
provided by IoT, it often experiences attacks due
to the large number of devices connected to the
internet network and connected to each other,

making the network vulnerable to cyberattacks[5]
such as phishing, malware[6], and Distributed
Denial-of-Service (DDoS) attacks[7]. These
attacks can damage IoT devices, access personal
data stored on the device, and can even exploit
security weaknesses in the device so they can
access other networks[8]. DDoS is an attack that
is capable of paralyzing a server by flooding
network traffic which causes the network to go
down[9]. Therefore, a DDoS attack detection
system is needed on the Internet of Things
network.

To detect DDoS attacks that occur, one
common approach is to use an Intrusion
Detection System (IDS) which functions to
observe suspicious activity on the network[10].
Various IDS methods have been developed,
starting from the use of machine learning
algorithms, to Deep Learning, which is a machine
learning method that combines artificial neural
networks by imitating the way the human brain
works and the algorithms used are inspired by
the structure of the human brain[11],[12]. Deep
Learning has also been widely used to detect
DDoS attacks. In research [13] discussing the
development of an attack detection system on
cloud computing where cloud computing is also
vulnerable to DDoS attacks, the research uses

mailto:waaarcitaaa@gmail.com
mailto:kurniabudi@unama.ac.id
mailto:ekoaripwinanto@unama.ac.id
https://doi.org/10.23887/janapati.v13i3.79601

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 3, December 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 472

the KDDCup 99 dataset and uses the Deep
Learning method, namely RNN with accuracy
results of 94.12%. RNN has the best accuracy
compared to other methods. Furthermore, In the
study [14] using deep convolutional neural
networks (CNNs) to detect DDoS attacks. The
test results show that the proposed model is
able to detect attacks with an accuracy above
91%.

 One type of DDoS attack is UDP Flood.
UDP Flood attacks can cause significant
disruption to IoT devices, which often have limited
resources and unstable connectivity[15]. In
addition, Specifically, when compromised
devices were bombarded with TCP floods,
39.22% more reads and 34.68% more writes
were performed compared to normal
devices[16]. Therefore, it is important to
identify UDP Flooding attacks. To identify UDP
Flood attacks, researchers applied various
methods and environments. Machine learning
is one of the methods commonly used to detect
UDP Flooding attacks. However, the Machine
Learning method still has shortcomings,
besides low throughput, it also has a high false
positive rate[17].

The research aims to apply Deep
Learning with the RNN method to detect DDoS
attacks with the UDP Flood type. RNN was
chosen because it has high accuracy and strong

modeling for detection and the performance of
this method is superior to CNN[18].

In this research, RNN was tested to
detect UDP Flood attacks on the CICIoT2023
dataset, which is a dataset that has large
dimensions. Apart from that, in this research
Principal Component Analysis (PCA) was used to
extract features. The purpose of feature
extraction is to reduce the dimensions of the data
so that it can reduce computing time on the RNN.
This research is expected to provide insight into
the performance of PCA combined with RNN to
detect UDP Flood attacks in terms of Accuracy,
Precision, Recall and F1-Score parameters. This
insight can be used as a reference for other
researchers, especially in the field of IDS on IoT
infrastructure.

METHOD

In this research, several stages were
carried out. The first stage is collecting datasets,
the second stage is preprocessing data, the third
stage is cleaning data, the fourth stage is one-
hot-encoding, the fifth stage is feature extraction,
the sixth stage is data division, the seventh stage
is building a model, the eighth stage is training
the model, the ninth stage is testing, and the
tenth stage is detection results. For a more
detailed explanation, you can see the
experimental flow presented in Figure 1.

Figure 1. Flow of Experiments

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 3, December 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 473

Based on Figure 1, it can be explained
that the research experiment was carried out
through the following stages:

a) Data preprocessing. At this stage, data
cleaning, such as deleting missing
values, is carried out. Then, one-hot
encoding is carried out to convert the
data into binary. The dataset used in the
experiment is the CICIoT2023 dataset,
where only benign traffic and UDP Flood
attacks are used. The data is in .csv
format.

b) Feature extraction. At this stage, feature
extraction is carried out with PCA. The
aim is to reduce features so that it can
improve the detection system's
performance.

c) Attack detection model. At this stage,
RNN is used to detect UDP Flood
attacks. Epochs 10, 50, and 100 are
applied to the training model.

d) Performance model. At this stage, the
performance of the RNN model is

measured using the Accuracy, precision,
recall, and F1-Score values.
Furthermore, the model performance for
each epoch is compared.

e) The best result. The best results will be
obtained from the results of the
experiment.

CICIoT2023 Dataset
The dataset used in this research is

CICIoT2023 which is sourced from the Canadian
Cyber Security Institute (CIC), in the CICIoT2023
dataset there are seven types of attacks, namely
DDoS, Brute Force, Spoofing, Dos, Recon, Web-
Based, and Mirai[19]. The author uses a UDP
Flood type DDoS attack dataset which has 168
files and 46 features in it. In this study, only 10
data files from the CICIoT2023 dataset were
used. Table 1 presents a list of features in the
CICIoT2023 Dataset. In table 2 the profile of the
dataset used in this research is presented. The
detailed data used for the experiment is
presented in Table 3.

Table 1. Features Name, Data Type, and Example Data on Dataset CICIoT2023

No Fitur Dataset Data Type Data Example
1 Flow_Duration Numerical 00.00
2 Header_Lenght Numerical 54.00.00
3 Protocol Type Numerical 06.00
4 Duration Numerical 64.00.00
5 Rate Numerical 0.3298071530725829
6 Srate Numerical 0.3298071530725829
7 Drate Numerical 00.00
8 Fin_Flag_Number Numerical 01.00
9 Syn_Flag_Number Numerical 00.00
10 Rst_Flag_Number Numerical 01.00
11 Psh_Flag_Number Numerical 00.00
12 Ack_Flag_Number Numerical 00.00
13 Ece_Flag_Number Numerical 00.00
14 Cwr_Flag_Number Numerical 00.00
15 Ack_Count Numerical 01.00
16 Syn_Count Numerical 00.00
17 Fin_Count Numerical 01.00
18 Urg_Count Numerical 00.00
19 Rst_Count Numerical 00.00
20 HTTP Numerical 00.00
21 HTTPS Numerical 00.00
22 DNS Numerical 00.00
23 Telnet Numerical 00.00
24 SMTP Numerical 00.00
25 SSH Numerical 00.00
26 IRC Numerical 00.00
27 TCP Numerical 00.00
28 UDP Numerical 00.00
29 DHCP Numerical 00.00
30 ARP Numerical 00.00
31 ICMP Numerical 00.00
32 IPv Numerical 01.00
33 LLC Numerical 01.00

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 3, December 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 474

No Fitur Dataset Data Type Data Example
34 Tot_Sum Numerical 567.00.00
35 Min Numerical 54.00.00
36 Max Numerical 54.00.00
37 AVG Numerical 54.00.00
38 Std Numerical 00.00
39 Total Size Numerical 54.00
40 IAT Numerical 8.334.383.192.013.870
41 Number Numerical 09.05
42 Magnitue Numerical 10.392.304.845.413.200
43 Radius Numerical 00.00
44 Covariance Numerical 00.00
45 Variance Numerical 00.00
46 Weight Numerical 141.55.00

Table 2. Dataset Profile

No Label Numbers of packages
1 DDoS UDP Flood 320.069
2 Benign Traffic 65.715

Total Package 385.784

Table 3. Data Spesification for Experiment

File# Dataset Type of Traffic
UDP Flood Benign

1 UDP_01.csv 27.626 5.600
2 UDP_02.csv 26.301 5.464
3 UDP_03.csv 28.639 5.874
4 UDP_04.csv 26.979 5.537
5 UDP_05.csv 30.995 6.427
6 UDP_06.csv 50.129 10.060
7 UDP_07.csv 24.932 5.046
8 UDP_08.csv 51.820 10.731
9 UDP_09.csv 26.735 5.513
10 UDP_10.csv 25.913 5.463

Sub. Total 320.069 65.715
Total 385.784

Data Preprocessing

In the preprocessing stage, data
selection will be carried out, where the
CICIoT2023 dataset has several attack classes
and 1 benign class. In this study, only 2 classes
of data will be used, namely DDoS-UDP Flood
and BenignTraffic (normal attacks). In addition,
the preprocessing stage also removes duplicate
data and data that has no value. To delete
duplicate data, pseudocode 1 is used. To check
data that has missing values, use pseudocode 2.

Pseudocode 1 : Displaying and Deleting
Duplicate Data
data.duplicated().sum()
df = pd.DataFrame(data)
df_no_duplicates_subset =
df.drop_duplicates(subset=['flow_duration',
'Header_Length', 'Protocol Type',
'Duration', 'Rate', 'Srate', 'Drate',
'fin_flag_number','syn_flag_number',
'rst_flag_number', 'psh_flag_number',

'ack_flag_number', 'ece_flag_number',
'cwr_flag_number', 'ack_count',
'syn_count', 'fin_count',
'urg_count','rst_count', 'HTTP', 'HTTPS',
'DNS', 'Telnet', 'SMTP', 'SSH', 'IRC', 'TCP',
'UDP', 'DHCP', 'ARP', 'ICMP',
'IPv', 'LLC', 'Tot sum', 'Min', 'Max', 'AVG',
'Std', 'Tot size','IAT', 'Number', 'Magnitue',
'Radius', 'Covariance', 'Variance', 'Weight',
'label'])
print("\nDataFrame Setelah Menghapus
Duplikasi (Subset):")
print(df_no_duplicates_subset)

Pseudocode 2. check data that has
missing values
print(data.isnull().sum())
data =
data.dropna(subset=['flow_duration',
'Header_Length', 'Protocol Type',
'Duration',
'Rate', 'Srate', 'Drate',
'fin_flag_number', 'syn_flag_number',

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 3, December 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 475

'cwr_flag_number', 'ack_count',
'syn_count', 'fin_count', 'urg_count',
'rst_count',
'HTTP', 'HTTPS', 'DNS', 'Telnet',
'SMTP', 'SSH', 'IRC', 'TCP', 'UDP',
'DHCP', 'ARP', 'ICMP',
'Radius', 'Covariance', 'Variance',
'Weight', 'label'])
display(data)

One-Hot Encoding

One-Hot Encoding is a binary
representation where each vector is converted
into binary where the class value (label) is
represented with the value 1 and other values can
be represented with the value 0.

Feature Extraction Using PCA

The feature extraction technique used in
this research is Principal Component Analysis
(PCA), which functions to reduce the value
dimensions of the data and to improve the
performance of the model used[20]. PCA is a
technique used in reducing the size of data.
Principal Component Analysis (PCA) calculates
the covariance matrix of the data, then looks for
the eigenvector and eigenvalue. The Principal
Component Analysis (PCA) method is suitable for
use on data that has a large number of attributes
and is correlated with each other[21]. Feature
extraction using PCA is applied with pseudocode
3.

Pseudocode 3: Feature Extraction
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
pca = PCA(n_components=10)
X_pca = pca.fit_transform(X_scaled)
explained_variance_ratio =
pca.explained_variance_ratio_
print("Rasio Varians yang Dijelaskan oleh
Komponen Utama
selected_features =
data.columns[np.argmax(np.abs(pca.components_
), axis=1)]
print("Fitur yang Dipilih:", selected_features)

RNN Model

After splitting the data, the next stage
involves building the Recurrent Neural Network
(RNN) model, which will be used for the training
process. The model is constructed using the
simple RNN library, with a sigmoid activation
function applied due to the binary classification
task, which involves two classes. The RNN library
provides flexibility in adjusting model parameters,
such as the number of layers, units, and activation

functions, allowing for fine-tuning to achieve
optimal performance. This enables the model to
effectively learn from the training data and
generalize well to the testing data.

An RNN is a type of neural network that
is specifically designed to process sequential
data, such as time-series data or any data where
temporal relationships are important. Unlike
traditional feedforward neural networks, RNNs
have connections that form cycles, allowing them
to maintain a memory of previous inputs in the
hidden layers. This characteristic enables RNNs
to capture patterns in sequential data over time,
making them highly effective for tasks like time-
series forecasting, natural language processing,
and, in this case, detecting patterns in network
traffic to identify DDoS attacks.

One of the key advantages of RNNs is
their ability to handle sequential dependencies,
meaning they can retain information from
previous time steps and use it to inform current
predictions in Figure 2.

This is particularly beneficial when
working with data where context matters, such as
in IoT network traffic, where identifying an attack
might require an understanding of past traffic
patterns. Additionally, RNNs can work with
variable-length input sequences, making them
versatile for a wide range of applications. The
recurrent nature of the network also allows for
more efficient training on temporal data, leading
to more accurate predictions in tasks involving
time-dependent features. Pseudocode 4 is used
to model the RNN.

Pseudocode 4 : Recurrent Neural Network Model
model = Sequential()
model.add(SimpleRNN(units = 10,
activation='sigmoid', return_sequences=True,
input_shape= (X_train.shape[1],1)))
model.add(Dropout(0.2))
model.add(SimpleRNN(units = 10,
activation='sigmoid', return_sequences=True))
model.add(Dropout(0.2))
model.add(SimpleRNN(units = 10,
activation='sigmoid', return_sequences=True))
model.add(Dropout(0.2))
model.add(SimpleRNN(units = 10))
model.add(Dropout(0.2))
model.add(Dense(units=1, activation='sigmoid'))
model.compile(optimizer='adam',
loss='binary_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=[10,50,100]
batch_size=512)
predictions = model.predict(X_test)

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 3, December 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 476

Figure 2 RNN Architecture

RNN Model Training

At this stage, the training process of the
recurrent neural network model is carried out
using the training data. This phase aims to train
the model so that it can recognize more complex
attack patterns. In the RNN Model training phase,
several epoch parameters are used, namely 10,
50, and 100. In table 4 the training process using
the epoch parameter 10 is presented. Based on
the training results using RNN epoch 10 mode
which have been presented in table 4, it can be
seen an increase in the performance of the RNN
model. The first epoch, the loss value is 0.6469
and the accuracy is 0.6226. In the RNN model
training process, the loss value continues to
decrease and the accuracy value continues to
increase. It can be seen in epoch 10, the loss
value decreases with a value of 0.3514, while the
accuracy increases to 0.8342. And it has been
presented in table 5, the training process using
epoch 50, the loss value continues to decrease
and the accuracy value increases, the same as in
table 6, the training process for epoch 100 using
RNN, the loss value continues to decrease and
the accuracy increases. So it can be concluded
that the RNN model is successful in carrying out
training effectively and is able to perform pattern
recognition well.

Detection System Testing
After the model training process has

been carried out, the next stage is the testing
process using testing data where the model will
learn patterns of normal attacks from network
traffic and carry out tests. In the testing process
three epoch parameters are used, including 10,
50 and 100.

Detection Results

The next step after testing is to measure
the detection results using a confusion
matrix.Confusion Matrix is a measurement
technique used in Deep Learning to view the
performance of a model or algorithm to see the
accuracy, precision, recall and f1-score of the
model used[22]. At this stage, it is to see how well
the performance of the model used to detect
attacks is. The following are the equations for
accuracy, precision, recall, and f1-score[23].

𝐴𝑘𝑢𝑟𝑎𝑠𝑖 = !"#!$

!"#!$#%"#%$
 (1)

𝑃𝑟𝑒𝑠𝑖𝑠𝑖 = !"
!"#%"

 (2)
𝑅𝑒𝑐𝑎𝑙𝑙 !"

!"#%$
 (3)

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 × &'()**	×	"-'././
&'()**	+	"-'././

 (4)

Tabel 4. Proses Training Epoch 10

Training Model
history = model.fit(X_train, y_train, epochs=10, batch_size=512, validation_split=0.3)
Epoch 1/10
32/32 [==============================] - 8s 86ms/step - loss: 0.6469 - accuracy: 0.6226 - val_loss: 0.5041
- val_accuracy: 0.8313

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 3, December 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 477

Epoch 2/10
32/32 [==============================] - 2s 68ms/step - loss: 0.5060 - accuracy: 0.8136 - val_loss: 0.4540
- val_accuracy: 0.8313
Epoch 3/10
32/32 [==============================] - 2s 67ms/step - loss: 0.4731 - accuracy: 0.8283 - val_loss: 0.4528
- val_accuracy: 0.8313
Epoch 4/10
32/32 [==============================] - 2s 68ms/step - loss: 0.4720 - accuracy: 0.8295 - val_loss: 0.4525
- val_accuracy: 0.8313
Epoch 5/10
32/32 [==============================] - 4s 119ms/step - loss: 0.4708 - accuracy: 0.8303 - val_loss: 0.4509
- val_accuracy: 0.8313

…
Epoch 10/10
32/32 [==============================] - 3s 94ms/step - loss: 0.3514 - accuracy: 0.8342 - val_loss: 0.2560
- val_accuracy: 0.9359

Tabel 5 Proses Training Epoch 50

Training Model
history = model.fit(X_train, y_train, epochs=50, batch_size=512, validation_split=0.3)
Epoch 1/50
32/32 [==============================] - 7s 98ms/step - loss: 0.8879 - accuracy: 0.3681 - val_loss: 0.6088 -
val_accuracy: 0.8313
Epoch 2/50
32/32 [==============================] - 3s 80ms/step - loss: 0.5946 - accuracy: 0.7005 - val_loss: 0.4847 -
val_accuracy: 0.8313
Epoch 3/50
32/32 [==============================] - 4s 129ms/step - loss: 0.5159 - accuracy: 0.7932 - val_loss: 0.4578
- val_accuracy: 0.8313
Epoch 4/50
32/32 [==============================] - 3s 79ms/step - loss: 0.4910 - accuracy: 0.8156 - val_loss: 0.4526 -
val_accuracy: 0.8313
Epoch 5/50
32/32 [==============================] - 2s 76ms/step - loss: 0.4825 - accuracy: 0.8245 - val_loss: 0.4522 -
val_accuracy: 0.8313

…
Epoch 50/50
32/32 [==============================] - 4s 118ms/step - loss: 0.1102 - accuracy: 0.9591 - val_loss: 0.0799
- val_accuracy: 0.9713

Tabel 6. Proses Training Epoch 100

Training Model
history = model.fit(X_train, y_train, epochs=100, batch_size=512, validation_split=0.3)
Epoch 1/100
32/32 [==============================] - 7s 85ms/step - loss: 0.4983 - accuracy: 0.8158 - val_loss: 0.4608 -
val_accuracy: 0.8313
Epoch 2/100
32/32 [==============================] - 2s 67ms/step - loss: 0.4773 - accuracy: 0.8299 - val_loss: 0.4575 -
val_accuracy: 0.8313
Epoch 3/100
32/32 [==============================] - 2s 67ms/step - loss: 0.4702 - accuracy: 0.8303 - val_loss: 0.4549 -
val_accuracy: 0.8313
Epoch 4/100
32/32 [==============================] - 3s 87ms/step - loss: 0.4686 - accuracy: 0.8300 - val_loss: 0.4548 -
val_accuracy: 0.8313
Epoch 5/100
32/32 [==============================] - 3s 96ms/step - loss: 0.4678 - accuracy: 0.8302 - val_loss: 0.4531 -
val_accuracy: 0.8313

…
Epoch 100/100
32/32 [==============================] - 3s 96ms/step - loss: 0.0944 - accuracy: 0.9689 - val_loss: 0.0621 -
val_accuracy: 0.9854

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 3, December 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 478

RESULT AND DISCUSSION
In this section, the results and discussion

of the experiments that have been carried out are
presented, where this discussion section contains
the results of feature extraction and an evaluation
of the performance of the recurrent neural
network model in carrying out detection.

Below in table 7 are the feature extraction
weights using principal component analysis
(PCA). The aim of feature extraction is to reduce
the feature dimensions in the dataset. Based on
Table 7, it shows the results of feature extraction
using the PCA technique. From the table
presented, this research reduced 46 features to
10 features. The results of feature extraction are
used to process training data using the RNN
method, in this process it is successful in
extracting features from the range -0 to 1. The
next stage is presented with attack detection
testing using the Recurrent Neural Network
(RNN) method, in this research testing using
three epoch parameters include 10, 50, and 100.

Based on Figure 3 which has been
presented, it can be seen that the results of the

"Sequential" model have 9 layers, for the first
layer, namely simpleRNN, where this first layer
has 10 units (neurons) with a sigmoid activation
function and return sequence indicating that the
output from the layer will be the sequence that
will be used. returned by the next layer, the
second layer is dropout to reduce overfitting.

Figure 3. RNN Model

Tabel 7. Weight PCA Result

Fitur PCA Result
10 -0.037199, -1.207362, 0.014371, -0.179166, -0,064135, 0.015371, -0.052441, 0.041760, -

0,053336, -0.051410

10 -0.014397, -0.777617, 0.499403, -0.335046, 1.393951, -0282846, 1.144556, -0.504602,
0.088795, -0.170807

10 -0.045452, -1.218391, 0.053087, -0.596143, -0.059501, -0.051573, 0.005627, 0.070024,
0.206097, 0.017802

10 -0.067031, -1.145960, 0.033895, -0.460764, 0.55125, -0.007650, 0.018137, -0.003043,
0,045564, 0.274592

10 -0.051226, -1.246096, -0.614934, 0.218699, -0.019531, -0.019282, -0.034572, 0.068057,
-0.051146, 0.061969

10 -0.032959, 0.543165, -0.235668, -0.570090, 0.247616, 0.126126, 0.967699, 0.075070,
-0.858132, -0.970213

The third layer, namely simpleRNN1, has

the same configuration as the first layer, the
fourth layer, namely dropout1, is used again to
reduce overfitting, then the fifth layer, namely
simpleRNN2, has the same configuration as the
first layer and is followed by the sixth layer,
namely dropout2. Likewise, the seventh and
eighth layers have the same configuration as the
first layer, and the ninth layer, namely dense, has
1 unit (neuron) in it with a sigmoid activation
function which functions to produce output in the
range 0 and 1.

The following are the results of attack
detection using the RNN method which has been
tested using three epoch parameters, the results

of attack detection are accuracy, precision, recall
and f1 score. Below in table 8 are the detection
results using the epoch 10 parameter.

In the detection results using RNN epoch
10, the highest accuracy reached 96%, the
highest precision reached 99%, the highest recall
reached 100%, and the highest f1 score reached
98%. Next, in table 9, the detection results using
RNN epoch 50 are presented.
In the detection results using RNN epoch 50, the
highest accuracy reached 98%, the highest
precision reached 100%, the highest recall
reached 99%, and the highest f1 score reached
99%. Next, in table 10, the detection results using
RNN epoch 100 are presented.

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 3, December 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 479

Table 8. Epoch 10 RNN Detection Result
Dataset Accuracy Precission Recall F1- score
UDP_01 93% 99% 93% 96%
UDP_02 95% 96% 98% 97%
UDP_03 92% 99% 91% 95%
UDP_04 92% 99% 92% 95%
UDP_05 93% 94% 98% 96%
UDP_06 96% 98% 98% 98%
UDP_07 96% 95% 100% 97%
UDP_08 96% 97% 98% 98%
UDP_09 93% 94% 98% 96%
UDP_10 96% 97% 98% 98%

Table 9. Epoch 50 RNN Detection Result

Dataset Accuracy Precission Recall F1-score
UDP_01 97% 99% 97% 98%
UDP_02 97% 99% 98% 98%
UDP_03 98% 98% 99% 99%
UDP_04 97% 99% 97% 98%
UDP_05 98% 99% 99% 99%
UDP_06 97% 99% 98% 98%
UDP_07 97% 99% 97% 98%
UDP_08 98% 100% 97% 99%
UDP_09 97% 99% 97% 98%
UDP_10 97% 99% 98% 98%

Table 10. Epoch 100 RNN Detection Result

Dataset Accuracy Precission Recall F1-score
UDP_01 98% 99% 99% 99%
UDP_02 99% 99% 100% 99%
UDP_03 97% 99% 98% 98%
UDP_04 96% 96% 100% 98%
UDP_05 99% 99% 100% 99%
UDP_06 99% 99% 100% 99%
UDP_07 98% 98% 100% 99%
UDP_08 99% 100% 99% 99%
UDP_09 98% 98% 99% 99%
UDP_10 99% 99% 100% 99%

Figure 4. Performance Comparison for Each Epoch

91%
92%
93%
94%
95%
96%
97%
98%
99%

10 50 100

94%

97%
98%

97%

99% 99%

96%

98%

99%

97%
98%

99%

Accuracy Precision Recall F1 Score

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 3, December 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 480

In the detection results using RNN epoch

100, the highest accuracy reached 99%, the
highest precision reached 100%, the highest
recall reached 100%, and the highest f1 score
reached 99%.

Based on Figure 4 that has been
presented, it can be seen that the detection
results using the epoch 100 parameter have the
best performance with an accuracy value
reaching 98%, a precision value reaching 99%, a
recall value reaching 99%, and an f1 score
reaching 99%. Based on the test results, it can be
concluded that the Recurrent Neural Network
(RNN) method is able to detect UDP Flood DDoS
attacks with high accuracy indicating that
detecting attacks using deep learning Recurrent
Neural Network (RNN) methods can recognize
complex attack patterns on IoT network traffic, as
can be seen in research[13] detecting DDoS
Attacks using the Deep Neural Network method
result an accuracy of 94.12%. so it can be
compared that RNN is superior in detecting
attacks that focus on UDP Flood attacks on IoT
networks. However, this study has limitations
including only testing UDP Flood attacks, in
addition to the use of limited datasets so that if
implemented on more complex network traffic, the
results may be different.

CONCLUSION

This study proposes a method to detect
DDoS attacks of the UDP Flood type on IoT
networks. To represent real IoT network traffic,
this study uses the CICIoT2023 dataset. This
dataset has a large data dimension. To reduce
the feature dimension, Principal Component
Analysis is applied. This technique successfully
reduces 40 features to 10 features. The reduced
data is then used as input data for the RNN
model. In this study, experiments were conducted
using 10 datasets and three epoch parameters,
namely 10, 50 and 100. Model performance was
measured by looking at the accuracy, precision,
recall and f1-score values. The test results show
the superiority of the RNN method in recognizing
attacks on complex IoT networks. By applying
three epoch parameters (iterations), namely 10,
50 and 100, at epoch 100 the accuracy value
reaches 98%, precision 99%, recall 99% and f1-
score 99%. These results show that by
performing feature reduction using PCA, and
applying the RNN model, very good UDP Flood
attack detection performance is obtained.
Although the test results show very good
performance, further research is still needed to
test the reliability of the model. The model still
needs to be tested with a more complex number

of attacks (traffic types) and a larger amount of
data.

REFERENCES
[1] D. E. Kouicem, A. Bouabdallah, and H.

Lakhlef, “Internet of things security: A top-
down survey,” Comput. Networks, vol. 141,
pp. 199–221, 2018, doi:
10.1016/j.comnet.2018.03.012.

[2] B. Di Martino, M. Rak, M. Ficco, A. Esposito,
S. A. Maisto, and S. Nacchia, “Internet of
things reference architectures, security and
interoperability: A survey,” Internet of
Things, vol. 1–2, pp. 99–112, 2018, doi:
10.1016/j.iot.2018.08.008.

[3] I. Khajenasiri, A. Estebsari, M. Verhelst, and
G. Gielen, “A review on Internet of Things
solutions for intelligent energy control in
buildings for smart city applications,” Energy
Procedia, vol. 111, no. September 2016, pp.
770–779, 2017, doi:
10.1016/j.egypro.2017.03.239.

[4] R. Kaur, P. Vats, M. Mandot, S. S. Biswas,
and R. Garg, “Literature Survey for IoT-
based Smart Home Automation: A
Comparative Analysis,” in 2021 9th
International Conference on Reliability,
Infocom Technologies and Optimization
(Trends and Future Directions) (ICRITO),
2021, pp. 1–6. doi:
10.1109/ICRITO51393.2021.9596421.

[5] K. H. Le, M. H. Nguyen, T. D. Tran, and N.
D. Tran, “IMIDS: An Intelligent Intrusion
Detection System against Cyber Threats in
IoT,” Electron., vol. 11, no. 4, pp. 1–16,
2022, doi: 10.3390/electronics11040524.

[6] S. Sharmeen, S. Huda, J. H. Abawajy, W. N.
Ismail, and M. M. Hassan, “Malware Threats
and Detection for Industrial Mobile-IoT
Networks,” IEEE Access, vol. 6, no. c, pp.
15941–15957, 2018, doi:
10.1109/ACCESS.2018.2815660.

[7] H. Mustapha and A. M. Alghamdi, “DDoS
attacks on the internet of things and their
prevention methods,” Proc. 2nd Int. Conf.
Futur. Networks Distrib. Syst. - ICFNDS ’18,
pp. 1–5, 2018, doi:
10.1145/3231053.3231057.

[8] V. Subbarayalu, B. Surendiran, and P. Arun
Raj Kumar, “Hybrid Network Intrusion
Detection System for Smart Environments
Based on Internet of Things,” Comput. J.,
vol. 62, no. 12, pp. 1822–1839, Dec. 2019,
doi: 10.1093/comjnl/bxz082.

[9] N. Chaabouni, M. Mosbah, A. Zemmari, C.
Sauvignac, and P. Faruki, “Network
Intrusion Detection for IoT Security based
on Learning Techniques,” IEEE Commun.

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 3, December 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 481

Surv. Tutorials, vol. PP, no. 0, pp. 1–1, 2019,
doi: 10.1109/comst.2019.2896380.

[10] M. Roopak, G. Y. Tian, and J. Chambers,
“An Intrusion Detection System Against
DDoS Attacks in IoT Networks,” 2020 10th
Annu. Comput. Commun. Work. Conf.
CCWC 2020, pp. 562–567, 2020, doi:
10.1109/CCWC47524.2020.9031206.

[11] S. Gurung, M. Kanti Ghose, and A. Subedi,
“Deep Learning Approach on Network
Intrusion Detection System using NSL-KDD
Dataset,” Int. J. Comput. Netw. Inf. Secur.,
vol. 11, no. 3, pp. 8–14, Mar. 2019, doi:
10.5815/ijcnis.2019.03.02.

[12] B. I. Farhan and A. D. Jasim, “Survey of
Intrusion Detection Using Deep Learning in
the Internet of Things,” Iraqi J. Comput. Sci.
Math., vol. 3, no. 1, pp. 83–93, 2022, doi:
10.52866/ijcsm.2022.01.01.009.

[13] R. SaiSindhuTheja and G. K. Shyam, “An
efficient metaheuristic algorithm based
feature selection and recurrent neural
network for DoS attack detection in cloud
computing environment,” Appl. Soft
Comput., vol. 100, Mar. 2021, doi:
10.1016/j.asoc.2020.106997.

[14] B. Hussain, Q. Du, B. Sun, and Z. Han,
“Deep Learning-Based DDoS-Attack
Detection for Cyber–Physical System Over
5G Network,” IEEE Trans. Ind. Informatics,
vol. 17, no. 2, pp. 860–870, 2021, doi:
10.1109/TII.2020.2974520.

[15] L. Feinstein, “Preventing DDoS attack using
Data mining Algorithms,” IEEE Cloud
Comput., vol. 6, no. 10, p. 390, 2016,
[Online]. Available: www.ijsrp.org

[16] B. Tushir, H. Sehgal, R. Nair, B. Dezfouli,
and Y. Liu, “The Impact of DoS Attacks on
Resource-constrained IoT Devices : A Study
on the Mirai Attack,” arXiv Prepr.
arXiv2104.09041, 2021.

[17] M. A. Al-shareeda, S. Manickam, and M. A.
Saare, “DDoS attacks detection using

machine learning and deep learning
techniques : analysis and comparison,” vol.
12, no. 2, pp. 930–939, 2023, doi:
10.11591/eei.v12i2.4466.

[18] A. Halbouni, T. S. Gunawan, M. H. Habaebi,
M. Halbouni, M. Kartiwi, and R. Ahmad,
“Machine Learning and Deep Learning
Approaches for CyberSecurity: A Review,”
IEEE Access, vol. 10, pp. 19572–19585,
2022, doi:
10.1109/ACCESS.2022.3151248.

[19] E. Carlos et al., “CICIoT2023: A Real-Time
Dataset and Benchmark for Large-Scale
Attacks in IoT Environment,” 2023, doi:
10.20944/preprints202305.0443.v1.

[20] F. Salo, A. B. Nassif, and A. Essex,
“Dimensionality reduction with IG-PCA and
ensemble classifier for network intrusion
detection,” Comput. Networks, vol. 148, pp.
164–175, Jan. 2019, doi:
10.1016/j.comnet.2018.11.010.

[21] S. A. Kadom, S. H. Hashem, and S. H. Jafer,
“Optimize network intrusion detection
system based on PCA feature extraction
and three naïve bayes classifiers,” J. Phys.
Conf. Ser., vol. 2322, no. 1, 2022, doi:
10.1088/1742-6596/2322/1/012092.

[22] R. Vinayakumar, M. Alazab, K. P. Soman, P.
Poornachandran, A. Al-Nemrat, and S.
Venkatraman, “Deep Learning Approach for
Intelligent Intrusion Detection System,”
IEEE Access, vol. 7, pp. 41525–41550,
2019, doi:
10.1109/ACCESS.2019.2895334.

[23] Z. Ahmad, A. Shahid Khan, C. Wai Shiang,
J. Abdullah, and F. Ahmad, “Network
intrusion detection system: A systematic
study of machine learning and deep learning
approaches,” Trans. Emerg. Telecommun.
Technol., vol. 32, no. 1, Jan. 2021, doi:
10.1002/ett.4150.

