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Abstract 

Internet of Thing (IoT) is a concept where an object can transfer data through a network without requiring 
human interaction. Complex IoT networks make it vulnerable to cyber attacks such as DDoS UDP Flood 
attacks, UDP Flood attacks can disrupt IoT devices. Therefore, this study proposes an attack detection 
method using a deep learning approach with the Recurrent Neural Network (RNN) method. This study uses 
Principle Component Analysis (PCA) to reduce the feature dimension, before learning using RNN. The 
purpose of this study is to test the combined performance of the PCA and RNN methods to detect DDoS 
UDP Flood attacks on IoT networks. The testing in this study used 10 datasets sourced from CICIOT2023 
containing UDP Flood and Benign DDoS traffic data, and the testing was carried out using three epoch 
parameters (iterations), namely 10, 50, and 100. The test results using RNN epoch 100 were superior, 
showing satisfactory performance with an accuracy value of 98%, precision of 99%, recall of 99%, and f1-
score of 99%. Based on the experimental results, it can be concluded that combining PCA and RNN is able 
to detect UDP Flooding attacks by showing high accuracy. 
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INTRODUCTION 

Internet of things or commonly known as 
IoT is a concept where an object can transfer data 
over a network without the need for human 
interaction. With the development of IoT 
technology in the near future it will become 
something commonly used in the future[1]. The 
development of IoT is often interpreted by the 
term smart integrated with existing and 
conventional infrastructure, such as smart city, 
smart health, smart transportation, and smart 
home[2]. 

The presence of IoT makes it easier and 
speeds up the process of interaction between 
humans and objects. IoT can be applied in 
various fields including health, industry, 
automotive and others[3]. The application of IoT 
in everyday life, for example, a remote control that 
can notify the owner via short message about the 
use of the AC in their house which has not been 
turned off when the owner is away from home, 
another example is if there is a gas leak at home, 
the home owner will receive a warning via direct 
message automatic[4]. 

However, with all the convenience 
provided by IoT, it often experiences attacks due 
to the large number of devices connected to the 
internet network and connected to each other, 

making the network vulnerable to cyberattacks[5] 
such as phishing, malware[6], and Distributed 
Denial-of-Service (DDoS) attacks[7]. These 
attacks can damage IoT devices, access personal 
data stored on the device, and can even exploit 
security weaknesses in the device so they can 
access other networks[8]. DDoS is an attack that 
is capable of paralyzing a server by flooding 
network traffic which causes the network to go 
down[9]. Therefore, a DDoS attack detection 
system is needed on the Internet of Things 
network. 

To detect DDoS attacks that occur, one 
common approach is to use an Intrusion 
Detection System (IDS) which functions to 
observe suspicious activity on the network[10]. 
Various IDS methods have been developed, 
starting from the use of machine learning 
algorithms, to Deep Learning, which is a machine 
learning method that combines artificial neural 
networks by imitating the way the human brain 
works and the algorithms used are inspired by 
the structure of the human brain[11],[12]. Deep 
Learning has also been widely used to detect 
DDoS attacks. In research [13] discussing the 
development of an attack detection system on 
cloud computing where cloud computing is also 
vulnerable to DDoS attacks, the research uses 
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the KDDCup 99 dataset and uses the Deep 
Learning method, namely RNN with accuracy 
results of 94.12%. RNN has the best accuracy 
compared to other methods. Furthermore, In the 
study [14] using deep convolutional neural 
networks (CNNs) to detect DDoS attacks. The 
test results show that the proposed model is 
able to detect attacks with an accuracy above 
91%. 

 One type of DDoS attack is UDP Flood. 
UDP Flood attacks can cause significant 
disruption to IoT devices, which often have limited 
resources and unstable connectivity[15]. In 
addition, Specifically, when compromised 
devices were bombarded with TCP floods, 
39.22% more reads and 34.68% more writes 
were performed compared to normal 
devices[16]. Therefore, it is important to 
identify UDP Flooding attacks. To identify UDP 
Flood attacks, researchers applied various 
methods and environments. Machine learning 
is one of the methods commonly used to detect 
UDP Flooding attacks. However, the Machine 
Learning method still has shortcomings, 
besides low throughput, it also has a high false 
positive rate[17]. 

The research aims to apply Deep 
Learning with the RNN method to detect DDoS 
attacks with the UDP Flood type. RNN was 
chosen because it has high accuracy and strong 

modeling for detection and the performance of 
this method is superior to CNN[18]. 

In this research, RNN was tested to 
detect UDP Flood attacks on the CICIoT2023 
dataset, which is a dataset that has large 
dimensions. Apart from that, in this research 
Principal Component Analysis (PCA) was used to 
extract features. The purpose of feature 
extraction is to reduce the dimensions of the data 
so that it can reduce computing time on the RNN.  
This research is expected to provide insight into 
the performance of PCA combined with RNN to 
detect UDP Flood attacks in terms of Accuracy, 
Precision, Recall and F1-Score parameters. This 
insight can be used as a reference for other 
researchers, especially in the field of IDS on IoT 
infrastructure. 

 
METHOD 

In this research, several stages were 
carried out. The first stage is collecting datasets, 
the second stage is preprocessing data, the third 
stage is cleaning data, the fourth stage is one-
hot-encoding, the fifth stage is feature extraction, 
the sixth stage is data division, the seventh stage 
is building a model, the eighth stage is training 
the model, the ninth stage is testing, and the 
tenth stage is detection results. For a more 
detailed explanation, you can see the 
experimental flow presented in Figure 1.

 

 
 

Figure 1. Flow of Experiments
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Based on Figure 1, it can be explained 
that the research experiment was carried out 
through the following stages: 

a) Data preprocessing. At this stage, data 
cleaning, such as deleting missing 
values, is carried out. Then, one-hot 
encoding is carried out to convert the 
data into binary. The dataset used in the 
experiment is the CICIoT2023 dataset, 
where only benign traffic and UDP Flood 
attacks are used. The data is in .csv 
format. 

b) Feature extraction. At this stage, feature 
extraction is carried out with PCA. The 
aim is to reduce features so that it can 
improve the detection system's 
performance. 

c) Attack detection model. At this stage, 
RNN is used to detect UDP Flood 
attacks. Epochs 10, 50, and 100 are 
applied to the training model. 

d) Performance model. At this stage, the 
performance of the RNN model is 

measured using the Accuracy, precision, 
recall, and F1-Score values. 
Furthermore, the model performance for 
each epoch is compared. 

e) The best result. The best results will be 
obtained from the results of the 
experiment. 
 

CICIoT2023 Dataset 
The dataset used in this research is 

CICIoT2023 which is sourced from the Canadian 
Cyber Security Institute (CIC), in the CICIoT2023 
dataset there are seven types of attacks, namely 
DDoS, Brute Force, Spoofing, Dos, Recon, Web-
Based, and Mirai[19]. The author uses a UDP 
Flood type DDoS attack dataset which has 168 
files and 46 features in it. In this study, only 10 
data files from the CICIoT2023 dataset were 
used. Table 1 presents a list of features in the 
CICIoT2023 Dataset. In table 2 the profile of the 
dataset used in this research is presented. The 
detailed data used for the experiment is 
presented in Table 3.

 
Table 1. Features Name, Data Type, and Example Data  on Dataset CICIoT2023 

No Fitur Dataset Data Type Data Example 
1 Flow_Duration Numerical 00.00 
2 Header_Lenght Numerical 54.00.00 
3 Protocol Type Numerical 06.00 
4 Duration Numerical 64.00.00 
5 Rate Numerical 0.3298071530725829 
6 Srate Numerical 0.3298071530725829 
7 Drate Numerical 00.00 
8 Fin_Flag_Number Numerical 01.00 
9 Syn_Flag_Number Numerical 00.00 
10 Rst_Flag_Number Numerical 01.00 
11 Psh_Flag_Number Numerical 00.00 
12 Ack_Flag_Number Numerical 00.00 
13 Ece_Flag_Number Numerical 00.00 
14 Cwr_Flag_Number Numerical 00.00 
15 Ack_Count Numerical 01.00 
16 Syn_Count Numerical 00.00 
17 Fin_Count Numerical 01.00 
18 Urg_Count Numerical 00.00 
19 Rst_Count Numerical 00.00 
20 HTTP Numerical 00.00 
21 HTTPS Numerical 00.00 
22 DNS Numerical 00.00 
23 Telnet Numerical 00.00 
24 SMTP Numerical 00.00 
25 SSH Numerical 00.00 
26 IRC Numerical 00.00 
27 TCP Numerical 00.00 
28 UDP Numerical 00.00 
29 DHCP Numerical 00.00 
30 ARP Numerical 00.00 
31 ICMP Numerical 00.00 
32 IPv Numerical 01.00 
33 LLC Numerical 01.00 
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No Fitur Dataset Data Type Data Example 
34 Tot_Sum Numerical 567.00.00 
35 Min Numerical 54.00.00 
36 Max Numerical 54.00.00 
37 AVG Numerical 54.00.00 
38 Std Numerical 00.00 
39 Total Size Numerical 54.00 
40 IAT Numerical 8.334.383.192.013.870 
41 Number Numerical 09.05 
42 Magnitue Numerical 10.392.304.845.413.200 
43 Radius Numerical 00.00 
44 Covariance Numerical 00.00 
45 Variance Numerical 00.00 
46 Weight Numerical 141.55.00 

 
Table 2. Dataset Profile 

No Label Numbers of packages 
1 DDoS UDP Flood 320.069 
2 Benign Traffic 65.715 

Total Package 385.784 
 

Table 3. Data Spesification for Experiment 

File# Dataset Type of Traffic 
UDP Flood Benign 

1 UDP_01.csv 27.626 5.600 
2 UDP_02.csv 26.301 5.464 
3 UDP_03.csv 28.639 5.874 
4 UDP_04.csv 26.979 5.537 
5 UDP_05.csv 30.995 6.427 
6 UDP_06.csv 50.129 10.060 
7 UDP_07.csv 24.932 5.046 
8 UDP_08.csv 51.820 10.731 
9 UDP_09.csv 26.735 5.513 
10 UDP_10.csv 25.913 5.463 

Sub. Total 320.069 65.715 
Total 385.784 

 
Data Preprocessing 

In the preprocessing stage, data 
selection will be carried out, where the 
CICIoT2023 dataset has several attack classes 
and 1 benign class. In this study, only 2 classes 
of data will be used, namely DDoS-UDP Flood 
and BenignTraffic (normal attacks). In addition, 
the preprocessing stage also removes duplicate 
data and data that has no value. To delete 
duplicate data, pseudocode 1 is used. To check 
data that has missing values, use pseudocode 2.  

 
Pseudocode 1 : Displaying and Deleting 
Duplicate Data 
data.duplicated().sum() 
df = pd.DataFrame(data) 
df_no_duplicates_subset = 
df.drop_duplicates(subset=['flow_duration', 
'Header_Length', 'Protocol Type', 
'Duration', 'Rate', 'Srate', 'Drate', 
'fin_flag_number','syn_flag_number', 
'rst_flag_number', 'psh_flag_number', 

'ack_flag_number', 'ece_flag_number', 
'cwr_flag_number', 'ack_count', 
'syn_count', 'fin_count', 
'urg_count','rst_count', 'HTTP', 'HTTPS', 
'DNS', 'Telnet', 'SMTP', 'SSH', 'IRC', 'TCP', 
'UDP', 'DHCP', 'ARP', 'ICMP', 
'IPv', 'LLC', 'Tot sum', 'Min', 'Max', 'AVG', 
'Std', 'Tot size','IAT', 'Number', 'Magnitue', 
'Radius', 'Covariance', 'Variance', 'Weight', 
'label']) 
print("\nDataFrame Setelah Menghapus 
Duplikasi (Subset):") 
print(df_no_duplicates_subset) 

 
Pseudocode 2. check data that has 
missing values 
print(data.isnull().sum()) 
data = 
data.dropna(subset=['flow_duration', 
'Header_Length', 'Protocol Type', 
'Duration', 
'Rate', 'Srate', 'Drate', 
'fin_flag_number', 'syn_flag_number', 
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'cwr_flag_number', 'ack_count', 
'syn_count', 'fin_count', 'urg_count', 
'rst_count', 
'HTTP', 'HTTPS', 'DNS', 'Telnet', 
'SMTP', 'SSH', 'IRC', 'TCP', 'UDP', 
'DHCP', 'ARP', 'ICMP', 
'Radius', 'Covariance', 'Variance', 
'Weight', 'label']) 
display(data) 

 
One-Hot Encoding 

One-Hot Encoding is a binary 
representation where each vector is converted 
into binary where the class value (label) is 
represented with the value 1 and other values can 
be represented with the value 0. 

 
Feature Extraction Using PCA 

The feature extraction technique used in 
this research is Principal Component Analysis 
(PCA), which functions to reduce the value 
dimensions of the data and to improve the 
performance of the model used[20]. PCA is a 
technique used in reducing the size of data. 
Principal Component Analysis (PCA) calculates 
the covariance matrix of the data, then looks for 
the eigenvector and eigenvalue. The Principal 
Component Analysis (PCA) method is suitable for 
use on data that has a large number of attributes 
and is correlated with each other[21]. Feature 
extraction using PCA is applied with pseudocode 
3. 

Pseudocode 3: Feature Extraction 
scaler = StandardScaler() 
X_scaled = scaler.fit_transform(X) 
pca = PCA(n_components=10) 
X_pca = pca.fit_transform(X_scaled) 
explained_variance_ratio = 
pca.explained_variance_ratio_ 
print("Rasio Varians yang Dijelaskan oleh 
Komponen Utama 
selected_features = 
data.columns[np.argmax(np.abs(pca.components_
), axis=1)] 
print("Fitur yang Dipilih:", selected_features) 

 
RNN Model 

After splitting the data, the next stage 
involves building the Recurrent Neural Network 
(RNN) model, which will be used for the training 
process. The model is constructed using the 
simple RNN library, with a sigmoid activation 
function applied due to the binary classification 
task, which involves two classes. The RNN library 
provides flexibility in adjusting model parameters, 
such as the number of layers, units, and activation 

functions, allowing for fine-tuning to achieve 
optimal performance. This enables the model to 
effectively learn from the training data and 
generalize well to the testing data. 

An RNN is a type of neural network that 
is specifically designed to process sequential 
data, such as time-series data or any data where 
temporal relationships are important. Unlike 
traditional feedforward neural networks, RNNs 
have connections that form cycles, allowing them 
to maintain a memory of previous inputs in the 
hidden layers. This characteristic enables RNNs 
to capture patterns in sequential data over time, 
making them highly effective for tasks like time-
series forecasting, natural language processing, 
and, in this case, detecting patterns in network 
traffic to identify DDoS attacks. 

One of the key advantages of RNNs is 
their ability to handle sequential dependencies, 
meaning they can retain information from 
previous time steps and use it to inform current 
predictions in Figure 2. 

This is particularly beneficial when 
working with data where context matters, such as 
in IoT network traffic, where identifying an attack 
might require an understanding of past traffic 
patterns. Additionally, RNNs can work with 
variable-length input sequences, making them 
versatile for a wide range of applications. The 
recurrent nature of the network also allows for 
more efficient training on temporal data, leading 
to more accurate predictions in tasks involving 
time-dependent features. Pseudocode 4 is used 
to model the RNN. 

Pseudocode 4 : Recurrent Neural Network Model 
model = Sequential() 
model.add(SimpleRNN(units = 10, 
activation='sigmoid', return_sequences=True, 
input_shape= (X_train.shape[1],1))) 
model.add(Dropout(0.2)) 
model.add(SimpleRNN(units = 10, 
activation='sigmoid', return_sequences=True)) 
model.add(Dropout(0.2)) 
model.add(SimpleRNN(units = 10, 
activation='sigmoid', return_sequences=True)) 
model.add(Dropout(0.2)) 
model.add(SimpleRNN(units = 10)) 
model.add(Dropout(0.2)) 
model.add(Dense(units=1, activation='sigmoid')) 
model.compile(optimizer='adam', 
loss='binary_crossentropy', metrics=['accuracy']) 
model.fit(X_train, y_train, epochs=[10,50,100] 
batch_size=512) 
predictions = model.predict(X_test) 
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Figure 2 RNN Architecture

 
RNN Model Training 

At this stage, the training process of the 
recurrent neural network model is carried out 
using the training data. This phase aims to train 
the model so that it can recognize more complex 
attack patterns. In the RNN Model training phase, 
several epoch parameters are used, namely 10, 
50, and 100. In table 4 the training process using 
the epoch parameter 10 is presented. Based on 
the training results using RNN epoch 10 mode 
which have been presented in table 4, it can be 
seen an increase in the performance of the RNN 
model. The first epoch, the loss value is 0.6469 
and the accuracy is 0.6226. In the RNN model 
training process, the loss value continues to 
decrease and the accuracy value continues to 
increase. It can be seen in epoch 10, the loss 
value decreases with a value of 0.3514, while the 
accuracy increases to 0.8342. And it has been 
presented in table 5, the training process using 
epoch 50, the loss value continues to decrease 
and the accuracy value increases, the same as in 
table 6, the training process for epoch 100 using 
RNN, the loss value continues to decrease and 
the accuracy increases. So it can be concluded 
that the RNN model is successful in carrying out 
training effectively and is able to perform pattern 
recognition well.  

Detection System Testing  
After the model training process has 

been carried out, the next stage is the testing 
process using testing data where the model will 
learn patterns of normal attacks from network 
traffic and carry out tests. In the testing process 
three epoch parameters are used, including 10, 
50 and 100. 

 
Detection Results 

The next step after testing is to measure 
the detection results using a confusion 
matrix.Confusion Matrix is a measurement 
technique used in Deep Learning to view the 
performance of a model or algorithm to see the 
accuracy, precision, recall and f1-score of the 
model used[22]. At this stage, it is to see how well 
the performance of the model used to detect 
attacks is. The following are the equations for 
accuracy, precision, recall, and f1-score[23]. 

 
𝐴𝑘𝑢𝑟𝑎𝑠𝑖 = !"#!$

!"#!$#%"#%$
   (1) 

𝑃𝑟𝑒𝑠𝑖𝑠𝑖 = !"
!"#%"

      (2) 
𝑅𝑒𝑐𝑎𝑙𝑙 !"

!"#%$
    (3) 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 × &'()**	×	"-'././
&'()**	+	"-'././

  (4) 
 

 
Tabel 4. Proses Training Epoch 10 

Training Model 
history = model.fit(X_train, y_train, epochs=10, batch_size=512, validation_split=0.3) 
Epoch 1/10 
32/32 [==============================] - 8s 86ms/step - loss: 0.6469 - accuracy: 0.6226 - val_loss: 0.5041 
- val_accuracy: 0.8313 
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Epoch 2/10 
32/32 [==============================] - 2s 68ms/step - loss: 0.5060 - accuracy: 0.8136 - val_loss: 0.4540 
- val_accuracy: 0.8313 
Epoch 3/10 
32/32 [==============================] - 2s 67ms/step - loss: 0.4731 - accuracy: 0.8283 - val_loss: 0.4528 
- val_accuracy: 0.8313 
Epoch 4/10 
32/32 [==============================] - 2s 68ms/step - loss: 0.4720 - accuracy: 0.8295 - val_loss: 0.4525 
- val_accuracy: 0.8313 
Epoch 5/10 
32/32 [==============================] - 4s 119ms/step - loss: 0.4708 - accuracy: 0.8303 - val_loss: 0.4509 
- val_accuracy: 0.8313 

… 
Epoch 10/10 
32/32 [==============================] - 3s 94ms/step - loss: 0.3514 - accuracy: 0.8342 - val_loss: 0.2560 
- val_accuracy: 0.9359 

 
Tabel 5 Proses Training Epoch 50 

Training Model 
history = model.fit(X_train, y_train, epochs=50, batch_size=512, validation_split=0.3) 
Epoch 1/50 
32/32 [==============================] - 7s 98ms/step - loss: 0.8879 - accuracy: 0.3681 - val_loss: 0.6088 - 
val_accuracy: 0.8313 
Epoch 2/50 
32/32 [==============================] - 3s 80ms/step - loss: 0.5946 - accuracy: 0.7005 - val_loss: 0.4847 - 
val_accuracy: 0.8313 
Epoch 3/50 
32/32 [==============================] - 4s 129ms/step - loss: 0.5159 - accuracy: 0.7932 - val_loss: 0.4578 
- val_accuracy: 0.8313 
Epoch 4/50 
32/32 [==============================] - 3s 79ms/step - loss: 0.4910 - accuracy: 0.8156 - val_loss: 0.4526 - 
val_accuracy: 0.8313 
Epoch 5/50 
32/32 [==============================] - 2s 76ms/step - loss: 0.4825 - accuracy: 0.8245 - val_loss: 0.4522 - 
val_accuracy: 0.8313 

… 
Epoch 50/50 
32/32 [==============================] - 4s 118ms/step - loss: 0.1102 - accuracy: 0.9591 - val_loss: 0.0799 
- val_accuracy: 0.9713 

 
Tabel 6. Proses Training Epoch 100 

Training Model 
history = model.fit(X_train, y_train, epochs=100, batch_size=512, validation_split=0.3) 
Epoch 1/100 
32/32 [==============================] - 7s 85ms/step - loss: 0.4983 - accuracy: 0.8158 - val_loss: 0.4608 - 
val_accuracy: 0.8313 
Epoch 2/100 
32/32 [==============================] - 2s 67ms/step - loss: 0.4773 - accuracy: 0.8299 - val_loss: 0.4575 - 
val_accuracy: 0.8313 
Epoch 3/100 
32/32 [==============================] - 2s 67ms/step - loss: 0.4702 - accuracy: 0.8303 - val_loss: 0.4549 - 
val_accuracy: 0.8313 
Epoch 4/100 
32/32 [==============================] - 3s 87ms/step - loss: 0.4686 - accuracy: 0.8300 - val_loss: 0.4548 - 
val_accuracy: 0.8313 
Epoch 5/100 
32/32 [==============================] - 3s 96ms/step - loss: 0.4678 - accuracy: 0.8302 - val_loss: 0.4531 - 
val_accuracy: 0.8313 

… 
Epoch 100/100 
32/32 [==============================] - 3s 96ms/step - loss: 0.0944 - accuracy: 0.9689 - val_loss: 0.0621 - 
val_accuracy: 0.9854 
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RESULT AND DISCUSSION 
In this section, the results and discussion 

of the experiments that have been carried out are 
presented, where this discussion section contains 
the results of feature extraction and an evaluation 
of the performance of the recurrent neural 
network model in carrying out detection.  

Below in table 7 are the feature extraction 
weights using principal component analysis 
(PCA). The aim of feature extraction is to reduce 
the feature dimensions in the dataset.   Based on 
Table 7, it shows the results of feature extraction 
using the PCA technique. From the table 
presented, this research reduced 46 features to 
10 features. The results of feature extraction are 
used to process training data using the RNN 
method, in this process it is successful in 
extracting features from the range -0 to 1. The 
next stage is presented with attack detection 
testing using the Recurrent Neural Network 
(RNN) method, in this research testing using 
three epoch parameters include 10, 50, and 100. 

Based on Figure 3 which has been 
presented, it can be seen that the results of the 

"Sequential" model have 9 layers, for the first 
layer, namely simpleRNN, where this first layer 
has 10 units (neurons) with a sigmoid activation 
function and return sequence indicating that the 
output from the layer will be the sequence that 
will be used. returned by the next layer, the 
second layer is dropout to reduce overfitting.  

 

 
Figure 3. RNN Model 

 
Tabel 7. Weight PCA Result 

Fitur PCA Result 
10 -0.037199, -1.207362, 0.014371, -0.179166, -0,064135, 0.015371, -0.052441, 0.041760, -

0,053336, -0.051410 

10 -0.014397, -0.777617, 0.499403, -0.335046, 1.393951, -0282846, 1.144556, -0.504602, 
0.088795, -0.170807 

10 -0.045452, -1.218391, 0.053087, -0.596143, -0.059501, -0.051573, 0.005627, 0.070024, 
0.206097, 0.017802 

10 -0.067031, -1.145960, 0.033895, -0.460764, 0.55125, -0.007650, 0.018137, -0.003043, 
0,045564, 0.274592 

10 -0.051226, -1.246096, -0.614934, 0.218699, -0.019531, -0.019282, -0.034572, 0.068057, 
-0.051146, 0.061969 

10 -0.032959, 0.543165, -0.235668, -0.570090, 0.247616, 0.126126, 0.967699, 0.075070, 
-0.858132, -0.970213 

 
The third layer, namely simpleRNN1, has 

the same configuration as the first layer, the 
fourth layer, namely dropout1, is used again to 
reduce overfitting, then the fifth layer, namely 
simpleRNN2, has the same configuration as the 
first layer and is followed by the sixth layer, 
namely dropout2. Likewise, the seventh and 
eighth layers have the same configuration as the 
first layer, and the ninth layer, namely dense, has 
1 unit (neuron) in it with a sigmoid activation 
function which functions to produce output in the 
range 0 and 1. 

The following are the results of attack 
detection using the RNN method which has been 
tested using three epoch parameters, the results 

of attack detection are accuracy, precision, recall 
and f1 score. Below in table 8 are the detection 
results using the epoch 10 parameter. 

In the detection results using RNN epoch 
10, the highest accuracy reached 96%, the 
highest precision reached 99%, the highest recall 
reached 100%, and the highest f1 score reached 
98%. Next, in table 9, the detection results using 
RNN epoch 50 are presented. 
In the detection results using RNN epoch 50, the 
highest accuracy reached 98%, the highest 
precision reached 100%, the highest recall 
reached 99%, and the highest f1 score reached 
99%. Next, in table 10, the detection results using 
RNN epoch 100 are presented.
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Table 8. Epoch 10 RNN Detection Result 
Dataset Accuracy Precission Recall F1- score 
UDP_01 93% 99% 93% 96% 
UDP_02 95% 96% 98% 97% 
UDP_03 92% 99% 91% 95% 
UDP_04 92% 99% 92% 95% 
UDP_05 93% 94% 98% 96% 
UDP_06 96% 98% 98% 98% 
UDP_07 96% 95% 100% 97% 
UDP_08 96% 97% 98% 98% 
UDP_09 93% 94% 98% 96% 
UDP_10 96% 97% 98% 98% 

 
Table 9. Epoch 50 RNN Detection Result 

Dataset Accuracy Precission Recall F1-score 
UDP_01 97% 99% 97% 98% 
UDP_02 97% 99% 98% 98% 
UDP_03 98% 98% 99% 99% 
UDP_04 97% 99% 97% 98% 
UDP_05 98% 99% 99% 99% 
UDP_06 97% 99% 98% 98% 
UDP_07 97% 99% 97% 98% 
UDP_08 98% 100% 97% 99% 
UDP_09 97% 99% 97% 98% 
UDP_10 97% 99% 98% 98% 

 
Table 10. Epoch 100 RNN Detection Result 

Dataset Accuracy Precission Recall F1-score 
UDP_01 98% 99% 99% 99% 
UDP_02 99% 99% 100% 99% 
UDP_03 97% 99% 98% 98% 
UDP_04 96% 96% 100% 98% 
UDP_05 99% 99% 100% 99% 
UDP_06 99% 99% 100% 99% 
UDP_07 98% 98% 100% 99% 
UDP_08 99% 100% 99% 99% 
UDP_09 98% 98% 99% 99% 
UDP_10 99% 99% 100% 99% 

 
 

 
 

Figure 4. Performance Comparison for Each Epoch 

91%
92%
93%
94%
95%
96%
97%
98%
99%

10 50 100

94%

97%
98%

97%

99% 99%

96%

98%

99%

97%
98%

99%

Accuracy Precision Recall F1 Score



ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online) 
Volume 13, Issue 3, December 2024 

 
Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 480 

 

 
In the detection results using RNN epoch 

100, the highest accuracy reached 99%, the 
highest precision reached 100%, the highest 
recall reached 100%, and the highest f1 score 
reached 99%. 

Based on Figure 4 that has been 
presented, it can be seen that the detection 
results using the epoch 100 parameter have the 
best performance with an accuracy value 
reaching 98%, a precision value reaching 99%, a 
recall value reaching 99%, and an f1 score 
reaching 99%. Based on the test results, it can be 
concluded that the Recurrent Neural Network 
(RNN) method is able to detect UDP Flood DDoS 
attacks with high accuracy indicating that 
detecting attacks using deep learning Recurrent 
Neural Network (RNN) methods can recognize 
complex attack patterns on IoT network traffic, as 
can be seen in research[13] detecting DDoS 
Attacks using the Deep Neural Network method 
result an accuracy of 94.12%. so it can be 
compared that RNN is superior in detecting 
attacks that focus on UDP Flood attacks on IoT 
networks. However, this study has limitations 
including only testing UDP Flood attacks, in 
addition to the use of limited datasets so that if 
implemented on more complex network traffic, the 
results may be different. 
 
CONCLUSION 

This study proposes a method to detect 
DDoS attacks of the UDP Flood type on IoT 
networks. To represent real IoT network traffic, 
this study uses the CICIoT2023 dataset. This 
dataset has a large data dimension. To reduce 
the feature dimension, Principal Component 
Analysis is applied. This technique successfully 
reduces 40 features to 10 features. The reduced 
data is then used as input data for the RNN 
model. In this study, experiments were conducted 
using 10 datasets and three epoch parameters, 
namely 10, 50 and 100. Model performance was 
measured by looking at the accuracy, precision, 
recall and f1-score values. The test results show 
the superiority of the RNN method in recognizing 
attacks on complex IoT networks. By applying 
three epoch parameters (iterations), namely 10, 
50 and 100, at epoch 100 the accuracy value 
reaches 98%, precision 99%, recall 99% and f1-
score 99%. These results show that by 
performing feature reduction using PCA, and 
applying the RNN model, very good UDP Flood 
attack detection performance is obtained. 
Although the test results show very good 
performance, further research is still needed to 
test the reliability of the model. The model still 
needs to be tested with a more complex number 

of attacks (traffic types) and a larger amount of 
data. 
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