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Abstract 

This research evaluates the performance of two Transformer models, the Vision Transformer (ViT) and 
Swin Transformer, in the analysis of thoracic X-ray images. The study's objective is to determine whether 
Transformer models can enhance diagnostic accuracy for lung diseases, considering challenges such as 
early symptom variability and similar radiological signs. The dataset includes 21,165 X-ray images, 
featuring 3,616 COVID-19 cases, 10,192 normal images, 6,012 images of Lung Opacity, and 1,345 
pneumonia images. Model development involved tuning hyperparameters such as epoch numbers and 
optimizer choice. The results indicate that using the AdamW and Adamax optimizers achieves an optimal 
balance between computational efficiency and accuracy. The Swin Transformer model, using the Adamax 
optimizer, reached the highest testing accuracy of 96.10% in 33,802.70 seconds, while the Vision 
Transformer achieved a testing accuracy of 95.10% in 33,503.10 seconds. 
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INTRODUCTION 

Lung diseases are a major global health 
issue, encompassing conditions such as 
pneumonia, lung opacity, chronic bronchitis, 
emphysema, lung cancer, and chronic obstructive 
pulmonary disease (COPD) [1], [2]. Identifying 
and diagnosing lung diseases often presents 
several challenges. The primary difficulties faced 
by physicians and paramedics stem from the 
variation in symptoms and clinical signs, which 
are frequently nonspecific, especially in the early 
stages of the disease [3]. Some pulmonary 
conditions, including interstitial fibrosis, exhibit 
similar radiological signs, complicating accurate 
diagnosis based on thoracic X-ray images alone. 
For instance, both pneumonia and COVID-19 can 
show infiltrate signs on X-ray images, but require 
different diagnostic approaches and management 
[4]. 

One solution to these challenges is the 
use of artificial intelligence technology, 
particularly image processing with deep learning 
techniques such as convolutional neural networks 
(CNNs). By leveraging the sophistication of these 
algorithms, more accurate and rapid analysis of 
X-ray images can be achieved, enabling more 
efficient detection and classification of lung 
diseases [5]. 

Previous research in the detection and 
classification of lung diseases using medical 

imaging has shown significant advancements. 
Many studies have employed deep learning 
techniques, notably convolutional neural 
networks (CNNs), with one highlighting progress 
in using deep learning algorithms for early 
disease detection from image data [6]. However, 
despite their benefits, some studies also revealed 
that CNNs have architectural limitations, such as 
limited vision due to their sliding window 
algorithm, which hinders the ability to view an 
entire image at once [7]. 

In 2020, a Google scientist named 
Dosovitskiy et al. [8] introduced an artificial 
intelligence model called Vision Transformer 
(ViT), followed by Liu et al. [9] with the Swin 
Transformer, aimed at addressing these CNN 
issues. Several studies have successfully applied 
these AI models to medical images such as 
computed tomography (CT) scans and X-ray 
images, claiming performance improvements in 
their detection processes with Transformer 
models using TransUnet and SwinUnet 
algorithms [10]. Other research has also claimed 
increased accuracy with Transformer models for 
MRI images, specifically for osteosarcoma [11]. In 
the field of remote sensing, the use of Swin 
Transformer enhanced with a Dynamic High-
Pass Preservation module showed significant 
improvements in pansharpening techniques, 
producing images with finer details and more 
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complete spectral information [12]. Research 
Peng et al [13] introduced modifications to the 
Swin Transformer that focus on spatial feature 
extraction for spectral analysis. This model 
successfully improved accuracy in object 
classification tasks by leveraging spectral and 
spatial information from images. Further research 
using MRI data demonstrated that the Swin 
Transformer could speed up MRI scanning 
processes. This technique reduces processing 
time without compromising image quality, offering 
an efficient solution to the performance time 
issues of traditional MRI [14]. 

For autonomous control, the use of the 
Vision Transformer in autonomous vehicle 
systems has successfully processed and visually 
understood the surrounding environment, 
implementing functions such as navigation and 
obstacle avoidance with high accuracy [15]. In 
medical image analysis, this technology aids in 
more effectively identifying and segmenting 
affected areas, demonstrating improved accuracy 
in disease classification [16]. The Vision 
Transformer also effectively reduces the time and 
resources needed for diagnosing COVID-19, with 
significantly improved accuracy compared to 
traditional CNN models [17]. Gender classification 
based on facial images using Vision Transformer 
shows good robustness against variations in pose 
and facial expressions [18]. 

Given the substantial potential of 
Transformer models in medical image 
processing, this study aims to conduct an in-depth 
evaluation of the capabilities of two Transformer 
models, Vision Transformer and Swin 
Transformer, in classifying lung diseases via X-
ray images. This research contributes by 
evaluating these two Transformer models for 
classifying lung diseases from X-ray images. The 

research stages include: data preprocessing to 
standardize images to consistent dimensions, 
followed by model training processes using 
various hyperparameter settings such as number 
of epochs and the use of optimizers like Adam, 
AdamW, Adamax, Nadam, Lamb, RMSprop, or 
SGD to explore their impact on model 
effectiveness in enhancing classification 
accuracy. After the training process, performance 
evaluation is conducted by measuring metrics 
such as accuracy, precision, recall, and F1-score, 
and conducting a comparative analysis of 
computational efficiency between both models to 
measure and compare the computational time of 
each model. This ensures that the assessment of 
both models is not only from the diagnostic 
accuracy perspective but also in terms of 
operational efficiency. The results of this study 
demonstrate the significant potential of 
Transformer models in enhancing the diagnostic 
accuracy of lung diseases, offering new insights 
into the application of artificial intelligence 
technology in the medical field. 
 
METHOD 

This research flow is designed to analyze 
the lung disease classification process using the 
Vision Transformer and Swin Transformer 
models, as depicted in Figure 1. The study adopts 
a structured methodology to evaluate the 
effectiveness of both models and also analyzes 
the efficacy of various optimizers in enhancing the 
accuracy of these models in classifying lung 
diseases using X-ray images. The stages 
involved include data preprocessing, model 
performance evaluation using metrics such as 
accuracy, precision, recall, and F1-score, and 
considering the training time efficiency. 

 

 
Figure 1. Research Flow
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A. Dataset 
This study utilizes a dataset from Kaggle 

[19] comprising a total of 21,165 chest X-ray 
images, including 3,616 COVID-19 positive case 
images, 10,192 normal images, 6,012 images of 
Lung Opacity, and 1,345 pneumonia images. As 
depicted in Figure 2, there are four panels each 
displaying chest X-ray images with different 
labels: Covid, Normal, Lung Opacity, and 
Pneumonia. Images labeled Covid illustrate 
typical features of COVID-19 infection, including 
the presence of hazy areas known as ground-
glass opacities, which usually appear in both 
lungs with an irregular pattern. The panel labeled 
Normal shows a radiograph of the lungs without 
signs of opacity or disease, with clear lung 
structures and normal vascular patterns, free of 
any hazy or dense areas. The panel labeled Lung 
Opacity displays dark areas or opacities within the 
lungs, indicating the presence of denser material 
than air, such as fluid, cells, or tissue. 

These conditions can be caused by various 
factors, including infection, inflammation, or 
cancer. Meanwhile, images labeled with 
Pneumonia display whiter or denser areas, 
indicating inflammation in the lungs, often 
characteristic of pneumonia caused by the 
accumulation of fluid or pus in the lung alveoli. 

 
B. Pre-Processing Data 

This process involves resizing the images 
to a standard size of 224 x 224 pixels to ensure 
uniform input into the transformer models, 
adapting methods proposed by Alexey 
Dosovitskiy et al. [8] and Ze Liu et al. 

This resizing aims to standardize the image 
dimensions used, creating a consistent format 
that aligns with the tested parameters in 
transformer model research. 

All preprocessed data is then divided into 
two sets: a training set and a testing set. The 
training set is used to train the Vision 
Transformer and Swin Transformer models, 
while the testing set is used to evaluate the 
models' performance in classifying lung diseases 
during the training process. The data split is 
randomly done with a 70% proportion for training 
and 30% for testing. We did not create a separate 
validation set, instead, we utilized the testing set 
as an evaluation set to validate the model's 
performance iteratively. This approach ensures 
that the models' accuracy is measured on data 
that they have not seen during training, providing 
a robust evaluation of their performance.  

 
C. Vision Transformer 

Vision Transformer (ViT) is a deep learning 
model that processes images by dividing them 
into fixed-size sections, which are then treated as 
tokens for analysis. The structure of the Vision 
Transformer consists of three main parts: patch 
and position embedding, transformer encoder, 
and classification head. Initially, the incoming 
image is split into several patches.  

As shown in Figure 3, the image is divided 
into small, equally sized pieces. Each patch is 
transformed into a vector through a flattening 
process and is given a linear projection to convert 
it into a format suitable for integration into the 
transformer encoder.

 

 
Figure 2. Example of a lung x-ray image 
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Figure 3. Vision Transformer architecture - The illustration inspired by [8] 

 
 

Each patch vector is also given positional 
encoding to inform the model about the relative 
position of each patch within the image. An 
additional class token is included to serve as a 
placeholder for the global representation of the 
image, which is later used for classification 
purposes.   

The next step is feature extraction, 
performed by the component called the encoder 
in the transformer. This encoder consists of 
several blocks, each with two main parts: Multi-
Head Self-Attention and MLP (Multi-Layer 
Perceptron). Multi-Head Self-Attention allows the 
model to simultaneously observe and compare 
all image patches, aiding the model in 
understanding the relationships between 
different parts of the image and identifying 
important features spread throughout the image. 
The second part, the MLP, is a neural network 
that enriches the model's processing by adding 
complexity to the information obtained from the 
attention mechanism. Each block in the encoder 
is also equipped with a normalization layer, which 
helps to stabilize the model's learning by 
normalizing the output distribution. 

After the encoder processes all the 
patches, the extracted information is further 
processed by the MLP Head. This MLP Head 
consists of one or more dense neural network 
layers that utilize non-linear functions to 
transform the information into a global image 
representation, based on the classification 
token. This global representation is then used 
to generate the final prediction in the form of a 
probability distribution that indicates the 
likelihood of the image belonging to a 
predefined category during training. This 
prediction is key to the model's final 

classification decision, determining which 
category is most likely to match the object in the 
image based on previous learning. 

This allows the model to capture 
relationships between different parts of the 
image through self-attention. The use of self-
attention enables the Vision Transformer to 
effectively extract image features and perform 
tasks such as image classification, object 
detection, and semantic segmentation[16]–[18], 
[20]. 
 
D. Swin Transformer 

The Swin Transformer is a neural network 
model that leverages transformer technology for 
image analysis, focusing on understanding the 
hierarchical relationships between different parts 
of the image. This model is more efficient than 
traditional transformers because it adopts a 
shifted window technique that reduces 
computational complexity. This approach allows it 
to dynamically adjust the focus on various parts of 
the image, enhancing its ability to process large 
images more efficiently while maintaining high 
accuracy in tasks such as object detection and 
semantic segmentation. 

The Swin Transformer architecture is 
divided into three main parts. First, the image is 
broken down into small blocks for easier 
analysis. Each stage of the architecture 
increases the number of channels while 
reducing spatial resolution, allowing the model 
to extract features at various levels of 
abstraction. Second, this process is carried out 
through several stages that progressively 
increase the complexity of the information 
processed.  
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Figure 4. Swin Transformer architecture - The illustration inspired by [9] 

 
Third, two consecutive Swin Transformer 

blocks utilize Multi-Layer Perceptrons, Layer 
Normalization, and Multi-head Self-Attention 
(including the Shifted Window variant) to 
effectively process information. This approach 
enables a deeper and more holistic 
understanding of the image, making the Swin 
Transformer suitable for various applications in 
computer vision, including classification, object 
detection, and semantic segmentation. The 
Swin Transformer achieves sophisticated 
results that surpass previous models such as 
ViT, DeiT, and ResNe(X)t in terms of accuracy 
while maintaining similar computational 
efficiency. Its performance in tasks like COCO 
object detection, ADE20K semantic 
segmentation, and ImageNet-1K image 
classification demonstrates its effectiveness in 
handling complex visual tasks. The success of 
the Swin Transformer highlights the potential of 
integrated modeling for computer vision and 
language, which could be beneficial for both 
computer vision and natural language 
processing domains[12], [13], [21]. 

 
E. Hyperparameter Tuning 

Selecting the right parameters for a 
developed model is crucial to improving 
classification performance. Hyperparameter 
tuning plays a critical role in machine learning 
and deep learning, as the chosen 
hyperparameters greatly influence the model's 
effectiveness. In this study, hyperparameter 
tuning methods are employed to determine the 
parameters of the optimizer used. An optimizer is 
an algorithm or method in artificial intelligence 
that plays a crucial role in adjusting parameters 
such as weights and biases, aiming to reduce the 
loss function or enhance production efficiency. 
This facilitates changes in weight values and 

adjusts the learning rate in neural networks so 
that losses can be minimized[22]. The 
parameters to be compared during 
hyperparameter tuning include Adam, AdamW, 
Adamax, Nadam, SGD, RMSprop, and Lamb. 

 
F. Model Evaluation 

To evaluate the Vision Transformer and 
Swin Transformer models, performance 
parameters such as Accuracy, Recall, Precision, 
and F1-score are determined. These parameters 
are calculated using a confusion matrix created 
for each model. Accuracy is calculated to 
determine the percentage of correct predictions. 
Precision is calculated to determine the 
probability of positive classification. Specificity 
determines the percentage of negative 
classifications correctly predicted from all 
parameters. Unlike specificity, recall determines 
the percentage of positive classes correctly 
predicted. The F1-score is used to determine the 
balance between specificity and recall. The 
parameters are expressed in the following 
equations: 

 
Accuracy	 = 	 !"#	!%

!"#!%#&"#&%
 (1) 

Precision	 = 	 !"
!"#&"

 (2) 

Sensitivity	/	Recall	 = 	 !"
!"#&%

 (3) 

Specificity = 	 !%
!%#&"	

 (4) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2	 @"'()*+*,-	.	/()011
"'()*+*,-#/()011

A (5) 

 
RESULT AND DISCUSSION 

This study utilizes four testing scenarios, 
which are as follows: 
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A. Base Model Result 
In this first scenario, testing was conducted 

on the proposed model as shown in Figure 5 and 
Figure 6. The testing was performed using the 
Adam optimizer with a learning rate of 0.0001, 10 
epochs, and a batch size of 32. In this first 
scenario, during the training process, the Vision 
Transformer model achieved a training accuracy 
of 0.991 and a testing accuracy of 0.942, while 
the Swin Transformer model achieved a training 
accuracy of 0.985 and a testing accuracy of 
0.952.  

The graph above shows the performance 
of the model trained using the Vision Transformer 
architecture with the Adam optimizer, evaluating 
metrics from epoch 1 to 10. It can be observed 
that the train accuracy consistently increases, 
reaching a high value by epoch 10, indicating that 
the model is learning effectively from the training 
data. In contrast, testing accuracy peaks at 
epoch 2 before experiencing a significant drop at 
epoch 6 and then stabilizing. This may indicate 
variations in the testing data the model 
encounters or potential overfitting as the number 
of epochs increases.  

Metrics for Precision, Recall, and F1-
Score show a similar trend to the testing 
accuracy, achieving higher values in the early 
epochs and then declining at epoch 6 before 
stabilizing again. This decline might be due to 
variations in more complex data or anomalies 
that the model encounters in the validation 
batches. 

 
Figure 5. Vision Transformer with Base Model 

Result 

 
Figure 6 presents the initial results from 

testing the Swin Transformer model. Train 
accuracy shows consistent improvement, 
indicating that the model continues to learn from 
the training data more effectively with each 
epoch. At the same time, testing accuracy peaks 
at Epoch 3 with a value of approximately 0.952 
before experiencing a slight decline and then 
stabilizing around 0.95. This suggests potential 
overfitting, where the model is very well-
optimized on the training data but less 
generalized to new data. Precision, Recall, and 
F1-Score, which measure the model's accuracy 
and success in correctly classifying data, follow a 
similar trend, reaching their highest values at 
Epoch 3 and showing slight variations in 
subsequent epochs. The consistency between 
Precision, Recall, and F1-Score highlights that 
the model demonstrates stable performance 
across various evaluation aspects. 

 
Figure 6. Swin Transformer with Base Model  

Results 

B. Testing Results with Hyperparameter Tuning 
In the second scenario, parameter 

optimization was performed on the proposed 
model using hyperparameter tuning. The model 
training was conducted with a learning rate of 
0.0001 and a batch size of 32. 

Table 1 shows the performance testing 
results of the Vision Transformer (ViT) 
architecture-based model using different 
optimizers over 50 epochs.

 
Table 1. Vision Transformer Model Hyperparameter Results 

Optimizer Max Train 
Acc 

Max Testing 
Acc 

Max 
Precision 

Max Recall Max F1-
Score 

Time (second) 

Adam 0.999 0.947 0.9
47 

0.947 0.947 32635.58 
Adamw 0.999 0.948 0.9

48 
0.948 0.947 33072.99 

Adamax 1 0.951 0.9
51 

0.951 0.951 33503.10 
Nadam 0.998 0.948 0.9

48 
0.948 0.948 33084.32 

SGD 0.925 0.905 0.9
05 

0.905 0.905 33514.04 
RMSProp 0.997 0.942 0.9

42 
0.942 0.942 33827.18 

Lamb 1 0.945 0.9
46 

0.945 0.945 34496.97 
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The results of the Vision Transformer (ViT) 
model, tested with various optimizers over 50 
epochs, showed that nearly all optimizers 
achieved very high training accuracy, with some 
even reaching a perfect score (1.000). This 
indicates the optimizers' effectiveness in learning 
from the training data. However, this also 
suggests potential overfitting, especially for 
optimizers that achieved perfect values. In terms 
of testing accuracy, the model with the Adamax 
optimizer stood out, achieving the highest value 
(0.951), indicating superior ability in generalizing 
learning to new data.  

 

 
Figure 7. Vision Transformer Model Results with 

Adamax Optimizer 
 

The choice of optimizer not only affects 
the model's performance in terms of accuracy 

and other metrics but can also impact 
computational time efficiency, with Table 1 
showing that the Adam optimizer had the most 
efficient total computational time compared to 
other optimizers. 

 
Figure 8. Confusion Matrix of Vision 

Transformer Model with Adamax Optimizer 
 

Overall, Precision and Recall move in 
alignment with testing accuracy, confirming that 
the model not only correctly classifies most 
classes but also effectively identifies relevant 
positive cases. From this analysis, it is evident 
that the choice of optimizer significantly impacts 
the model's ability to avoid overfitting while 
maintaining high generalization capability. 

Table 2 shows the performance testing 
results of the Swin Transformer architecture-
based model using different optimizers.

 
Table 2. Swin Transformer Model Hyperparameter Results 

Optimizer Max Train 
Acc 

Max Testing 
Acc 

Max 
Precision 

Max Recall Max F1-
Score 

Time (second) 

Adam 0.998 0.956 0.957 0.956 0.956 35532.04 
Adamw 0.998 0.955 0.956 0.955 0.955 32766.43 
Adamax 1 0.961 0.961 0.961 0.961 33802.70 
Nadam 0.997 0.954 0.955 0.954 0.954 34514.58 
SGD 0.927 0.929 0.929 0.929 0.928 33592.71 
RMSProp 0.997 0.950 0.951 0.950 0.950 34108.11 
Lamb 0.999 0.954 0.954 0.954 0.953 36039.29 

According to Table 2, it can be concluded 
that the Adamax optimizer is a highly effective 
option for achieving a balance in metric 
performance. The Swin-224 model with the 
Adamax optimizer demonstrated outstanding 
performance during training, as seen in the 
graphs of Figures 10 and 11 related to the 
confusion matrix. The rapid achievement and 
stability of maximum training accuracy indicate 
the model's ability to efficiently learn from the 
training data.  
 

 
Figure 9. Swin Transformer Model Results with 

Adamax Optimizer 
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Figure 10. Confusion Matrix of Swin 

Transformer Model with Adamax Optimizer 
 

Consistent validation metrics show the 
model's strong generalization capability, which is 
crucial for real-world applications. Despite some 
minor fluctuations, the overall performance 
remains stable and high. The Adamax optimizer 
has proven effective in achieving and maintaining 
high model performance with the best time 
efficiency among other optimizers, at 33,802.70 
seconds, making it an excellent choice for 
training the Swin Transformer model. 
 
C. Testing Results on Swin Transformer Model 

with Adamax per Class 
Based on the analysis from figures 11, 

12, and 13, the Swin Transformer model with the 
Adamax optimizer shows excellent performance 
in classifying images into four classes: COVID, 
Lung_Opacity, Normal, and Viral Pneumonia. 
The confusion matrix in figure 11 shows that the 
model has very high accuracy for the COVID, 
Normal, and Viral Pneumonia classes, with 
accuracies of 0.984, 0.970, and 0.979, 
respectively. However, the accuracy for the 
Lung_Opacity class is slightly lower at 0.925, 
indicating that this class is more challenging to 
classify correctly.  

The class accuracy graph in figure 12 
shows that the accuracy for the COVID class 
remains high and stable around 0.98 throughout 
the epochs. The accuracy for the Normal class is 
also very high, almost always above 0.95 after 
the first few epochs. On the other hand, the 
accuracy for the Lung_Opacity class varies and 
tends to be lower compared to the other classes, 
fluctuating between 0.80 and 0.95. The accuracy 
for the Viral Pneumonia class is also high, though 
showing some minor fluctuations, remaining 
around 0.93 to 0.98.  

The performance metrics graph in figure 
13 shows that the training accuracy consistently 
increases and reaches nearly 1.0 by epoch 30, 

indicating that the model is very effective in 
learning from the training data. The testing 
accuracy stabilizes around 0.95 after epoch 10 
and reaches its highest accuracy at epoch 18, 
indicating that the model generalizes well to the 
testing data. Precision, recall, and F1 score are 
also consistent and stable around 0.95 after 
epoch 10, demonstrating a good balance 
between precision and recall. Overall, despite 
some difficulty in correctly classifying the 
Lung_Opacity class, the model's performance is 
very strong with high accuracy in all other 
classes. 

 
Figure 11. Confusion Matrix of Swin 

Transformer with Adamax Optimizer per Class 
 

 
Figure 12. Testing Accuracy per class (COVID, 

Lung_Opacity, Normal, Viral Pneumonia). 
 

 
Figure 13. Performance Metrics Swin 

Transformer Model with Adamax per Class 
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D. Comparison of Proposed Model Testing 
Results with Previous Research 

In this third scenario, the proposed model 
is compared with previous research studies, as 
shown in Table 3. 

 
 

Table 3. Results of Proposed Model Testing Compared with Previous Research 

Model Class Optimizer 
Train 

Accuracy 
Testing 

Accuracy (%) 
F1-Score (%) 

CNN_Model [23] Normal and 
Covid-19 

Adam 99.08 96.71 97 

MobileNetv2 [23] Normal and 
Covid-19 

Adam 99.93 95.73 96 

ResNet50 [23] Normal and 
Covid-19 

Adam 98.50 91.54 91 

CNN_Model [24] Covid-19, 
Normal and 
Pneumonia 

Adam - 95.8 95.79 

InceptionV3 [25] Normal, 
Covid-19, 

Lung 
Opacity, 

Pneumonia 

Adam - 73.32 - 

ResNet50v1 [25] Normal, 
Covid-19, 

Lung 
Opacity, 

Pneumonia 

Adam - 92.38 - 

ResNet50v1 [25] Normal, 
Covid-19, 

Lung 
Opacity, 

Pneumonia 

SGD - 92.22 - 

Purpose Method 
(ViT) 

Normal, 
Covid-19, 

Lung 
Opacity, 

Pneumonia 

Adamax 100 95.1 95.1 

Purpose Method 
(Swin) 

Normal, 
Covid-19, 

Lung 
Opacity, 

Pneumonia 

Adamax 100 96.1 96.1 

E. Discussion 
 

The testing results for both transformer 
models, Vision Transformer and Swin 
Transformer, show significant performance 
variations depending on the hyperparameter 
tuning applied. Overall, the choice of optimizer 
has a significant impact on the model's time 
efficiency and accuracy. AdamW and Adamax 
stand out as the best options for both models, 
offering an excellent balance between 
performance and computational time efficiency. 

Training accuracy is frequently higher than 
testing accuracy, a phenomenon attributed to the 
tuning of model hyperparameters specifically for 
the training dataset during training. This specific 
tuning can lead to overfitting, where the model 
performs exceptionally well on training data but 
less effectively on new, unseen test data. For 
example, while the Swin Transformer achieved a 
testing accuracy of 96.1% using the Adamax 
optimizer, it is crucial to also evaluate the test 
data accuracy to ensure the model's 
generalization capability. In this study, 
hyperparameter tuning methods were employed 
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using various optimizers including Adam, 
AdamW, Adamax, and others to determine their 
impact on model performance metrics such as 
accuracy, precision, recall, and F1-score. 

The ViT model generally shows variations 
in computation time and performance depending 
on the optimizer used. The Adam optimizer 
shows the fastest total computation time of 
32,635.58 seconds, with a max train accuracy of 
99.9% and testing accuracy of 94.7%. The 
AdamW optimizer records a total computation 
time of 33,072.99 seconds, with a train accuracy 
of 99.9% and testing accuracy of 94.8%. The 
Nadam optimizer has a total computation time of 
33,084.32 seconds, with a max train accuracy of 
99.8% and testing accuracy of 94.8%. The 
Adamax optimizer records a slightly higher total 
computation time of 33,503.10 seconds but 
achieves a max train accuracy of 100% and 
testing accuracy of 95.1%.  

The Swin model generally shows 
variations in computation time and performance 
depending on the optimizer used. The AdamW 
optimizer shows a total computation time of 
32,766.43 seconds, with a maximum train 
accuracy of 99.8% and testing accuracy of 
95.5%. The SGD optimizer records a total 
computation time of 33,592.71 seconds, with a 
maximum train accuracy of 92.7% and testing 
accuracy of 92.9%. The Adamax optimizer 
records a slightly higher total computation time 
of 33,802.70 seconds but achieves a maximum 
train accuracy of 100% and testing accuracy of 
96.1%. 
In the Swin model, AdamW and Adamax provide 
the best balance between computation time and 
accuracy, along with excellent performance 
metrics. Adam and Nadam are also effective 
choices, offering very competitive performance. 

Although SGD is more efficient in 
computation time, it shows lower performance 
compared to other optimizers, making it less 
ideal for achieving maximum accuracy. 
RMSprop and LAMB perform well but with 
higher total computation times.  

Pointing the issue regarding the 
unbalanced dataset used in the experiment. We 
acknowledge that an unbalanced dataset can 
lead to biased prediction results, often favoring a 
dominant class. To address this, we have taken 
several measures in this research: 
We have added the experimental results and 
the best performance evaluation of the Swim 
Transformer for each class. The accuracy for 
the Covid class is 0.984, for the Normal class is 
0.97, and for the Viral Pneumonia class is 0.979. 
The overall accuracy of the Swim Transformer 
model is 0.961 or 96.1%. These results indicate 
that there is no significant difference between the 

per-class accuracy and the total accuracy, 
suggesting that the issue of unbalanced data in 
this dataset is within acceptable limits. For future 
research, we plan to analyze the problem of 
unbalanced datasets using imbalanced model 
approaches such as SMOTE. Performance 
Metrics: in this study employed a variety of 
performance metrics, including precision, recall, 
and F1-score, alongside accuracy. These 
metrics offer a more thorough assessment of the 
model's performance and assist in understanding 
its behavior across different classes. 
Hyperparameter Tuning: in this study, 
performed extensive tuning of hyperparameters 
and used optimizers such as Adamax and 
AdamW. These optimizers have proven effective 
in achieving more balanced performance across 
classes, despite the dataset imbalance. 
Testing Data Comparison: we evaluated the 
model's performance on test data to ascertain the 
actual impact of the unbalanced dataset on the 
model's ability to generalize. This comparison is 
vital for a comprehensive assessment of the bias 
introduced by the unbalanced dataset.  
Three methods above as strategies to mitigate 
bias and enhance the reliability and accuracy of 
our model's predictions.  

 
 
CONCLUSION 

In this study, we evaluated the performance 
and computational efficiency of the Swin and ViT 
models using various optimizers: Adam, AdamW, 
Adamax, Nadam, LAMB, SGD, and RMSprop. 
The analysis shows that the AdamW and Adamax 
optimizers consistently provide an optimal 
balance between computation time and 
performance metrics such as training accuracy, 
testing accuracy, precision, recall, and F1-score. 

For the Swin model, the AdamW optimizer 
recorded a total computation time of 32,766.43 
seconds with a maximum testing accuracy of 
95.5%, while Adamax required 33,802.70 
seconds with a maximum testing accuracy of 
96.1%. The ViT model showed similar results, 
where AdamW recorded a total computation time 
of 33,072.99 seconds with a maximum testing 
accuracy of 94.8%, and Adamax recorded a 
computation time of 33,503.10 seconds with a 
maximum testing accuracy of 95.1%.  

The SGD and RMSprop optimizers, 
although efficient in computation time, showed 
lower performance in terms of accuracy, 
particularly in the ViT model. The LAMB 
optimizer, despite requiring higher computation 
time, still provided good metric performance but 
was less efficient compared to AdamW and 
Adamax. 
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Overall, the Swin model with the Adamax 
optimizer achieved the best results in this study. 
This model demonstrated an optimal combination 
of high testing accuracy (96.1%) and efficient 
computation time (33,802.70 seconds). The 
Adamax optimizer on the Swin model provided 
strong performance metrics across all aspects 
(Precision, Recall, F1-score), making it the best 
choice based on the analyzed data.  
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