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Abstract 

In computer fighting games, the ability of players to play with Non-Player Characters (NPC) is essential. A 
poorly designed NPC leads to poor player engagements and unsatisfactory playing experiences due to 
predictable behaviors. A utility-based AI is game designer depended, thus leads to less-varied selections, 
therefore we propose an improved utility-based AI selected by genetic algorithm (GA) to determine the utility 
functions of each NPC action. The fitness functions of GA are determined by a rating method named ELO 
ratings which is usually used in chess games. The variety of decisions of human-like NPCs are generated 
by utility-based AI, which employ many forms of functions for calculating the value of the AI utility.  
Tests on chromosomes in each generation were also carried out to obtain different responses. The Pearson 
Correlation coefficient is used to obtain an analysis of the influence of each assessment variable. The 
satisfaction level continues to increase along with the generation iteration with an average of 0.1443 which 
demonstrates the influences the satisfaction level of game users. 
Keywords : Non Player Character, Behavior NPC, Utility based function, Genetic Algorithm, Satisfaction 
level 
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INTRODUCTION 

In a game, especially those with action 
genres such as fighting, the feature of playing with 
a Non-Player Character (NPC) must be that a 
player can still play the game even without any 
other players. An NPC will feel more natural and 
engaging to play with if the action is not easy to 
predict, such as when he will chase, attack, 
defend, or launch an ultimate attack. The method 
that is used to achieve those abilities, that is 
artificial intelligence (AI), is implemented in the 
NPCs as their brain [1]. AI in modern games 
generally leads to three needs: the ability to move 
the character, to make decisions on movements 
or actions, and to think tactically or strategically 
[2]. In virtual characters, the characteristics most 
needed to be developed on AI are as follows. 
1. Autonomous; so that NPCs can function 

effectively even without input from a human at 
run time.  

2. Reactive, so that NPCs are conscious and 
responsive to changing situations. 

3. Nondeterministic, so NPCs may give different 
outcome/behavior upon the same 
environments. 

4. Cultural Authentic is behaving as an individual 
of the culture depicted.  

5. Believable that it should keep the immersion 
by behaving as human beings [3] 

The demand from players for challenging 
gameplay with intelligent interaction with the NPC 
over time led to the further development of 
methods used by game developers for 
implementing AI in the game’s NPC. In popular AI 
methods such as Behaviors Tree (BT) ([4], 
defining problematic NPC Behaviors will cause 
the design of AI Behavior structures to be more 
complicated as it adds more branches and little 
changes (a slight change in a node may lead to 
changes on other nodes). In addition, decision-
making is also less varied because it is limited 
only to the branching condition of each node. 
Therefore, AI methods are needed to make 
games easier to design, but they can generate 
complex behavior with more varied decision 
making, i.e., low predictability in the perspective 
of the players. 
 
RELATED WORK 

One of AI design methods for NPC in 
games is utility-based AI [5]. Utility-based AI 
works by identifying the action options found on 
the AI and taking the best option (priority) by 
scoring the usefulness of each action option 
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based on a particular state, called utility. This 
makes utility-based AI much more comfortable to 
design since scoring calculations for each action 
have no strict relation to other actions. In addition, 
decision-making is also more varied since the 
choice of evaluation process is calculated using 
continuous functions. Such algorithms have been 
used previously in similar task such as the control 
of a video game character such as the research 
by Ng Chee Hou et al [6], where they use a 
genetic algorithm to create a finite state machine 
to play Mario Bros competitively, which shows 
that this algorithm is a viable option for controlling 
video game characters. Anang et al [7] research 
optimal GA-based boxing movements. Another 
study by Edirlei et al [8], where it describes a 
dynamically generated quest system which 
produce game quests that is indistinguishable 
from one made by a professional game designer, 
this study allows more dynamic storylines where 
allow a more personalized experience. Another 
study by Charoenkwan et al [9], also shows that 
such algorithms can also be used to make games, 
or mini games of existing games, but it also shows 
the limitation of such methods where complicated 
behaviors will cause unpredictable results, 
another result that they found is the primacy of 
fitness function which is one of the most important 
factors in using a genetic algorithm. Lastly a study 
by Lin et al [10], which shows emergent properties 
of such algorithms, where it creates tactical 
formations which would allow such games AI to 
adapt to unforeseen environments, this not only 
shows that such algorithms could adapts based 
on existing conditions, but also could arrive at 
optimal solutions for such tasks.  

This paper proposes an improved utility-
based AI which the curves of actions are 
generated by chromosomes chosen by the GA 
function. 

 
METHOD 

A fighting game prototype is used in this 
research to implement the proposed method as 
illustrated in Fig. 1. The game consists of fighting 
game elements in general, such as face-to-face 
battle, health points, battle timer, attack combos, 
attack parrying, and ultimate attack. 

In this game prototype system, there are 
two main phases. Those are procedures in the 
initialization phase and those in execution phase, 
as described in Fig. 2. In the initialization phase, 
the process begins with initializing population 
data using genetic algorithm. Next is the process 
of initializing utility-based AI as an evaluator in 
decision-making of action to be performed by the 
NPC. The process is then continued with the 
initialization of the initial condition for each NPC. 

In addition, various system components used, 
such as a timer (with a time limit of 120 seconds), 
game environment or stage, and user interfaces, 
are also prepared in this phase. Inside the user 
interfaces, users can view the attributes of each 
NPC, including the chromosome index of the 
population, ELO Ratings, the utility values of 
each action, the values of each parameter of 
consideration, and the history of actions that the 
NPC has done. 

The next phase is the execution phase, the 
core phase of how the game works. At this 
phase, there is a cycle of the system that will 
keep checking events of the core gameplay, 
including player input command, time calculation, 
artificial intelligence process with utility-based AI, 
population evaluation process with a genetic 
algorithm, and other events including the 
appearance of healing items (the item that is 
used to increase the health point of the NPC) 
which is also an element that influences the flow 
of the game. In the implementation phase, an 
interruption process can pause the game for a 
moment or stop the game completely. NPC 
conditions checking is used to determine the 
events occurring in the game. For example, the 
determination of whether the fight is in progress, 
and checking whether the game is over or not is 
determined by the health point of each player. 
The game ends if a unit health point reaches zero 
or the time runs out. 
 
IMPLEMENTATION OF THE CHARACTER’S 
FIGHTING GAME ELEMENT DESIGN 

The design of character attributes as 
playable and non-playable (NPC) is based on 
previous works on characters’ gameplay 
attributes [11]. Since the player encounters the 
enemy in the fighting game, the character 
attribute design is applied for both player and 
NPC as a specific enemy gameplay attribute in 
[11] is designed for multiple enemies. In our 
fighting game design, we limit the attack type to 
a physical attack that substitutes the element list. 
This type of attack is as follows: 

• Chain Strong Attack 
• Chain Normal Attack 
• Ultimate Attack 
We design attribute assignment input as in 

table 1. The distribution of Player HP follows 
equation 1. As HP increases based on the 
player’s level, the HP’ which is the targeted HP, 
increases according to the current HPi value and 
the next level(i+1). 

zP′	 = 	∑ HP("#$) + )HP("#$) −HP"+
&!
"'( 		 (1)	



ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online) 
Volume 13, Issue 2, July 2024 

 
Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 396 

 

P"C!"#$!"$ =
%#"$%!"

&%#"$&'%#"$''...'	%#"$%!"*
												(2)	

D(𝑚𝑎𝑥+", St$) = /(𝑚𝑎𝑥+" − St,)-													 (3)	

St′ =

⎩
⎨

⎧∑ !"%,$0	1(345!",!"%)7$!",!"%
()
%$& #$!"	

∑ !"%,$0	1(345!",!"%)7-,!"%
()
%$& #-	

∑ !"%,$0	1(345!",!"%)78,!"%
()
%$& #8	

9	,:";<=>,+<

							 (4)	

 
The character statistics distribution 

follows equations 2-4. Equation 2 is the attribute 
increase probability with  ist  as the contents of 
statistics to assign, which value is shown in   
Table 1 at no. 6.  
 

For example, according to Table 1, the P(C!"#8) 
is the probability of statistics to assign as 
‘Strength’, P(C!"#-) is the probability of stats to 
assign as ‘Endurance’. C!"#8	is the number of 
‘Strength’ values, and C!"#-	is the number of 
‘Endurance’ values derived from Table 1. 

Each attribute is randomised with results 
limited based on equation (3). D is the distance 
within the highest attribute value of x and the 
current p value. The 𝑚𝑎𝑥+" value in equations (3) 
and (4) depicts the desired maximum attribute 
value. Each level progression of the player is 
depicted by St$, which will continue rising to its 
highest value Np. St$ is the attribute value that 
increases every level i. 
 

 
Figure 1. Fighting Game Used in The Analysis 

 

Table 1. Input Data for Player Gameplay Attributes Calculation 
 

No. Variable Input 
1.  Start Level 1 
2.  Max Level 100 
3.  Start HP 159 
4.  Next HP 163 
5.  List Element [ ‘Chain Strong Attack’, ‘Chain Normal Attack’, ‘Ultimate Attack’] 
6.  List Stats Name [ ‘Strength’, ‘Endurance’, ‘Speed’, ‘Luck’ ] 
7.  Max Stats Value [ 74, 63, 65, 60 ] 
8.  Stats to Assign [ 2, 1 ] 
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Figure 2. Research Procedures in System Design 

PROPOSED UTILITY-BASE AI FOR NPC 
BEHAVIOUR 

The NPC acts as an opponent in the game 
used in this study. To be able to work in 
accordance with its role as an opponent, it takes 
artificial intelligence (AI) that will act as the brain 
of the NPC. In this research, an AI process for 
decision-making of action using utility-based AI is 
applied. 

In its application, the first thing to do is to 
determine the actions that can be done by the 
character, along with their consideration 
parameters. Each action has a utility value 
against one parameter of consideration. 
However, it is not impossible that action also has 
more than one consideration parameter.  

Therefore, the expected utility calculation 
is used with the following formula. 
 

         𝐸𝑈 = ∑ 𝐷!"
!#$ 𝑃!                           (5)   

 
In Eq. (5), D is the utility value of an action 

based on each parameter i, and P is the 
probability of the utility. This calculation is done 

for each action, and the action with the most 
significant expected utility will be chosen. This is 
called the Principle of Maximum Expected Utility 
[5]. This value can also be divided by the number 
of consideration parameters to get the average 
value. 

The following is a list of actions that 
characters can carry out. 

1. Chain Strong Attack 
2. Chain Normal Attack 
3. Chase Enemy 
4. Chase Healing Item 
5. Parry 
6. Ultimate Attack 
It is necessary to determine the forms of 

the utility functions for each consideration 
parameter in all actions. These functions will be 
modified using genetic algorithm later. Utility 
functions are created using a feature of Unity 3D 
called Animation Curve [12]-[14]. It is an object 
that holds a collection of keyframe objects 
located in a two-dimensional cartesian 
coordinate system. The keyframe’s position can 
be moved using a handle, allowing the user to 
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create a curve that can be used as a function to 
evaluate value over time.  

Using the Animation Curve, utility functions 
for all actions with each parameter of 
consideration are normalized based on the min-
max values of their respective parameters. Those 
values are normalized into a range from zero as 
the minimum possible and one as the maximum 
possibility. 

The following list explains the utility value 
calculation from each action based on their 
respective parameter.  

1.  Chain Strong Attack 
Utility functions for this action are 

determined by distance and elapsed attack time 
of the enemy as can be seen in Fig. 3. The enemy 
distance parameter derived from the normal 
Gaussian distribution with its apex lies at 0.3 as 
in Figure 3a. This kind of attack has a longer 
execution time thus it is better utilized in the 
maximum distance of this attack can be 
delivered. Also, regarding the enemy executed 
attack time or after idling for a relatively long time 
as seen in figure 3b, which shows reverse 
parabolic function. 

2. Chain Normal Attack 
The utility function for the action has a 

short execution time which is better for utilizing 
this action at a short distance. As shown in figure 
4, we design a utility function with an exponential 
decrease as further the distance of the enemy. 
The time parameter is derived from the sinusoid 
function that provides maximum utility value 
when the enemy finishes their attack or as a 
follow-up to another action. 

3. Chase Enemy 
This action determines whether chasing 

the enemy to engage then is more necessary 
than other chase actions. Enemy distance and 
character health point condition determine its 
utility value. A higher distance means the enemy 
is likely out of reach of the character attack range, 
thus motivating chasing the enemy. The high 
health point condition means the character is 
more confident to be engaged. 

4. Chase healing item 
The action of chasing a healing item affects 

the character health point condition, and the 
utility value is based on a sigmoid function which 
denotes that a lower health condition will 
motivate the character to chase healing item 
action. The higher enemy health point linearly will 
motivate higher utility value for this action. Lower 
distance from the character to the healing item 
position motivates the character to chase the 
action of the healing item. 

5.  Parry 

Parry action enables the character to parry 
an enemy attack with its utility value derived from 
the distance s from the enemy elapsed attack 
time. As the distance from the character is lower, 
this will make the parry action utility value higher, 
as the enemy elapsed attack time is based on 
gaussian distribution that makes the utility value 
on its apex at 0.15 on normalized time.  

6.  Ultimate Attack 
This ultimate attack action can be 

performed if a certain condition is fulfilled. This 
condition is determined by the power point 
gained from successful chain normal and strong 
attacks. Just like the previous attack, the distance 
of the enemy is paramount to successfully 
executing this attack. Thus, the utility value 
based on its distance is derived based on the 
optimal distance of attacking with this action. 
Furthermore, the utility function is also 
determined by power value based on the binary 
step function since this action can only be 
performed if a valid power condition is fulfilled. 

Each calculation and evaluation of action 
options should be performed at run time, in the 
sense that utility values are not specified when 
the scenario is being designed but evaluated 
based on the exact situation occurring at the 
simulation time [15]. 
 
Proposed Genetic Algorithm to Optimize 
Utility Functions 

GA is a problem-solving method that uses 
genetics as a problem-solving model. This 
method is a technique for finding approximate 
solutions to optimization problems by using the 
fitness function to get a better solution over each 
generation [16]. The architecture of GA 
implementation in Fighting Game by mapping 
each NPC character unit (Chromosome) to Utility 
Function (Gene) can be shown in Fig. 4. NPC 
characters in this game can influence AI.  

 
The chromosome is modelled as an object 

that stores a collection of utility functions for	all 
actions that stores a collection of utility functions 
for	 all actions based on each consideration 
parameter. Thus, any utility function can be 
called a gene. 

A population of thirty chromosomes was 
used as the initial population. The initial 
chromosome has utility functions that have been 
created manually. The twenty-nine initial 
chromosome copies are created to make the 
other twenty-nine chromosomes. A light mutation 
is then applied to those twenty-nine new 
chromosomes by changing one gene (one form 
of function) of each new chromosome 
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(a) 																																																																																																								(b)	

Figure 3. Utility Functions for The Action of Strong Chain Attack (A) Based on The Parameter of 
Enemy Distance (B) Based on The Parameter of The Enemy Has Elapsed Attack Tim 

 
 

 
 

Figure 4. Design on GA Implementation in Fighting Game by Mapping Each NPC Character Unit 
(Chromosomes) to Utility Functions (Gene)	

 
Defining the Fitness Function 
 

The way to evaluate whether AI works 
correctly in a fitness function system is defined. 
The system must be robust, designed to provide 
a comparative, and capable of evaluating where 
new individuals are often added or removed. The 
system should also allow for variations in 
individual performance, which concludes the 
outcome of many fights, rather than relying on 
one performance condition (win or lose) as a 
basis for ranking since a match itself is not 
entirely dependent on one NPC’s actions. The 
second NPC’s (opponent) reaction contributes 
significantly to success or failure. In addition, the 
actions of each NPC will vary so that each battle 

between each pair will be different. Therefore, the 
ELO Rating system works because the 
performance of NPCs in any match is a random 
variable in a normal distribution. The NPC’s 
overall rating must also be considered with the 
enemy's ability, winning, and losing outcomes. 
An equation is then applied to the rating to predict 
the NPC’s winning probability. The result of the 
equation is then used to calculate how many 
points will be added to the winner’s rating and 
how many points will be subtracted from the 
loser’s rating. The way to calculate the expected 
score of NPCs, the following formulas are used. 
 

 𝐸%$ =
$

$&$')*+,-*+.//122
                         (6) 
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$

$&$')*+,-*+.//122
               

           (7) 
 
 

In Eq. (6) and Eq. (7), P1 and P2 are the 
first NPC and second NPC. R1 and R2 are the 
ratings of both NPC. After the match between two 
NPCs, the ratings will be adjusted to the amount 
proportional to the difference between the 
expected score and the winning result. The 
formula used is as follows. 

 
𝑅%$) = 𝑅%$ + 𝐾(𝑆%$ − 𝐸%$)                        (8) 

	
In Eq. (8), K is a factor that controls the 

strength of an adjustment, and S is a Boolean 
(zero or one), which indicates victory or defeat. 
Every 30 chromosomes in the population will be 
given 1000 ELO Ratings. More vital NPCs are 
expected to reach ELO Ratings of up to 1000. 
Conversely, weaker NPC has ELO Ratings below 
1000. A round-robin tournament is held between 
all the existing chromosomes to find the ELO 
Ratings for each chromosome. Each of the 30 
chromosomes will fight 30 others except itself, 
which counts as 29.  

Each victory of a chromosome will 
increase the ELO Ratings of the chromosome. In 
contrast, ELO Ratings will be reduced if the 
chromosome loses. The difference in the addition 
or subtraction of ELO Ratings is applied from the 
calculation of the ELO Rating formula described, 
with a K factor value of 50. 

Determine which chromosomes will 
survive to the next generation and which 
chromosomes will be used for crossovers are 
needed. After calculating through a round-robin 
tournament, sorting populations makes the 
selection based on ELO Ratings. From the sorted 
population, one-third of chromosomes with the 
highest ELO Ratings are taken to form a new 
population. In this case, out of a third of the 
population of 30 chromosomes, the new 
population consists of 10 chromosomes. 

After obtaining one-third of the best 
chromosomes as the new population through the 
selection process, ten pairs of chromosomes are 
randomly selected. Against those ten pairs of 
chromosomes are then crossovers to get two 
new offspring. 

That way, the population, which is one-
third of the initial population (10 chromosomes), 
will be added with two new offspring from each 
chromosome pair with a total of 20 new 
chromosomes. So, the population becomes as 

much as the original number, which is 30 
chromosomes.  

After getting 20 new chromosomes 
through a crossover process, the chromosomes 
are not directly added to the population, but the 
mutation is done first. The mutation is done by 
altering the gene by randomly changing the 
position and gradient of the keyframe from the 
selected function's animation curve. The value of 
the mutation rate used in implementing this GA is 
0.25.  

This means that a quarter of all the genes 
in the new chromosomes are altered. A quarter 
of these genes are randomly selected from any 
chromosome so that each chromosome may 
have a different number of mutated genes. Once 
the mutation is done, the new chromosomes are 
inserted into the population, resulting in a new 
population for the next generation. ELO Ratings 
of the new population are returned to 1000 for the 
last tournament to produce new ELO Ratings. 
Every GA process that has been described is 
continuously repeated until it reaches the 40th 
generation. 
 
Testing NPC Against Human 

AI system testing is conducted to provide data 
on whether the NPC that implements utility-
based AI by utilizing GA has given the most 
optimized utility functions at each action to 
produce the best behavior. Therefore, in the AI 
system testing, the ability of AI is tested by 
comparing the fitness value of each of the best 
chromosomes in each generation by re-holding a 
round-robin tournament. The best chromosome 
in a generation is the chromosome that has the 
highest ELO Ratings. 

After several best chromosome samples are 
produced for each generation, to find a 
challenging AI when opposed by human players, 
human testing with 25 respondents of age above 
thirteen years is carried out. The age range was 
chosen because of the relatively hard difficulty 
level of the game, and those older players can 
better analyze and assess the behavior of the 
AIs. Out of the 40 chromosome samples from 
each generation, four samples representing the 
first generation to the latest generation were 
taken on the chromosomes in the 1st, 13th, 27th, 
and 40th generations. Every tester (human 
player) must then play these four chromosomes. 
Each tester must record their win (Boolean with a 
value of 1) or lose (Boolean with a value of 0) 
status, score the difficulty level (on a scale of 
five), and score the satisfaction level (on a scale 
of five). The average result of the winning status, 
difficulty level, and satisfaction level from all the 
respondents can be seen in Table 2. 
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Table 2. The Average Result of The Winning 
Status, Difficulty Level, and Satisfaction Level 

 
Pae 1st 

Gen 
13th 
Gen 

27th 
Gen 

40th 
Gen 

Winning 
Status 

0.64 0.36 0.44 0.4 

Difficulty 
Level 

2.77 3.34 3.81 3.87 

Satisfaction 
Level 

3.41 3.49 3.79 3.84 

 
Based on the data in Table 2, 

chromosomes from the first generation to the 
newest generation tend to have an increasing 
value of difficulty level. It follows the expectation 
that AI training using GA can produce 
chromosomes that become more vital as the 
generation iterates. The decrease also follows 
the increasing value of the difficulty level in the 
winning status of human players. Although the 
value of winning status from the 13th generation 
to the 27th generation increased, the values 
afterward continued to decrease. While the value 
of satisfaction level continuously increases as 
generation iterates. 

Correlations between winning status, 
difficulty level, and satisfaction level need to be 
measured. Calculations of the correlation 
coefficient between winning status and difficulty 
level, winning status and satisfaction level, and 
difficulty level are then performed. The 
correlation coefficient calculation result is then 
analyzed to deduce the criteria for challenging AI 
to be played by human players. The formula used 
to calculate the correlation coefficient is 
Pearson's correlation coefficient [17]–[19]. 

Based on Table 3, the winning status and 
the difficulty level have a strong negative linear 
correlation (-0.504), so the more complicated an 
AI is, the lower the possibility of a human player 
winning the match. Winning status and 
satisfaction level have a weak negative linear 
correlation (-0.037). Hardly any correlation 
indicates that winning status has almost no effect 
on satisfaction level because there are some 
testers who are satisfied when winning, while 
others are not satisfied when winning. While 
difficulty level and satisfaction level have a 
medium positive linear correlation (0.455), which 
means the testers are more satisfied when faced 
with a more challenging opponent. 

 

Table 3. Correlation Between Winning Status, 
Difficulty Level, and Satisfaction Level 

Measured Correlation Correlation 
Winning Status and Difficulty 

Level 
-0.504 

Winning Status and 
Satisfaction Level 

-0.037 

Difficulty Level and 
Satisfaction Level 

0.426 

 
 
RESULT AND DISCUSSION 

AI system testing is conducted to provide 
data on whether the NPC that implements utility-
based AI by utilizing GA [17], [18] has given the 
most optimized utility functions at each action to 
produce the best behavior. Therefore, in the AI 
system testing, the ability of AI is tested by 
comparing the fitness value of each of the best 
chromosomes in each generation by re-holding a 
round-robin tournament. The best chromosome 
in a generation is the chromosome that has the 
highest ELO Ratings. 

Round robin tournament needs to be done 
again because the ELO Ratings used for fitness 
apply only to chromosome comparisons in one 
generation that has undergone a round-robin 
tournament in the same generation. The best 
chromosome samples are required in each 
generation to be held round-robin to produce 
ELO Ratings on each of these chromosomes to 
compare fitness (ELO Ratings) in different 
generations. After the round-robin tournament, 
the ELO Rating graph of the representational 
chromosomes of each generation is shown in 
Figure 5. The winning percentage graph is also 
shown in Figure 6. 

The expected result is the increasing value 
of ELO Ratings from the first generation to the 
last generation (40th generation) caused by 
chromosomes which continuously improve their 
utility functions of each action in every iteration of 
its generation. In Fig. 5, the value of ELO Ratings 
as generation increases develops lucratively but 
results in a new peak or maximum value at 
specific points. This shows that the training 
process using GA can produce chromosomes 
with a more vital ability as generation increases, 
even though several generations of them must 
decrease ELO Ratings. 

The graph in Fig. 6 also has a pattern like 
the ELO Rating graph in Fig. 5. The percentage 
of winnings on each chromosome as the 
fluctuating generation grows, resulting in a new 
top or maximum value at specific point.
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Figure 5. Relation of ELO Ratings (Fitness) Obtained Through Round-Robin Tournament of Each 

Representative of The Best Chromosomes in Each Generation 
	

 
Figure 6. Winning Rate Obtained Through Round-Robin Tournament of Each Representative of 

The Best Chromosomes in Each Generation 
 

Despite having the same pattern, the two 
graphs do not always have the same increasing 
or decreasing behavior. For example, an 
increase in value between the 4th generation to 
the 5th generation of the ELO Rating graph 
precisely followed by the decreasing value of 
the winning percentage of the 4th generation to 
the 5th generation. This occurs in accordance 
with the principle of ELO Ratings that the 
performance of a player (in this context is AI) is 
a random variable of a normal distribution, 
where in addition to considering the results of 
winning and losing, ratings or the overall ability 
of both an NPC and it is opponent also a 
consideration. It is good for NPC’s action in 
game, which must mimicking human behavior. 
 
CONCLUSION 

Based on the results of implementation and 
experimentation, some conclusions can be drawn 
as follows:  

1) AI system testing results show that the 
training process using GA, with NPC as a 
chromosome model and the utility functions of 
each action are modelled as genes, and ELO 
Ratings as the fitness function can produce AI 
chromosomes with more vital ability as generation 
iterates. Although several generations of them 
experienced decreasing ELO Ratings, as 
generation iterates, it creates new chromosomes 
with new highest ELO Ratings ensure 
generations. 

2) Based on experiments on the 
chromosomes in the 1st, 13th, 27th, and 40th 
generations, each generation has divergent 
responses to each assessment on Winning 
Status, Difficulty Level, and Satisfaction Level. As 
in the first generation to the latest generation, the 
value of the difficulty level on the chromosomes 
increases by an average of 0.3637. This is 
relevant to the aim of this research that the 
implementation of AI using GA can produce 
obtrusive chromosomes as generations increase. 
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However, the winning status value tends to 
decrease, although the winning status value from 
the 13th generation to the 27th generation literally 
increased by 0.08, then decreased by 0.09% 
(from the 27th generation to the 40th generation). 
While the value of the satisfaction level continues 
to increase along with the generation iteration 
with an average of 0.1443. 

Future works will be focused on the 
creation of utility-based AI with more detailed 
actions and more consideration parameters so 
that the chosen decisions are more precise and 
to add more characters to the game with a 
balanced ability since character variation and 
character selection is an important feature [20] in 
a fighting game. In addition, things to consider in 
the development of the Fighting Game regarding 
the intelligent behavior of independent NPC 
agents is comparing several approaches, 
including hybrid methods, by observing learning 
speed instead of the greatest fitness function 
values only.  

 
ACKNOWLEDGMENT 

This work was supported by Institut 
Teknologi Sepuluh Nopember as a part of the 
Upgrading Program on Undergraduate Thesis. 

 
REFERENCES 
[1] Christyowidiasmoro, R. C. A. Putra, and S. 

M. Susiki, “Measuring level of difficulty in 
game using challenging rate (CR) on 2D 
Real time Strategy Line Defense game”, 
Proc. - 2015 Int. Electron. Symp. Emerg. 
Technol. Electron. Information, IES 2015, pp. 
218–222, 2016, doi: 
10.1109/ELECSYM.2015.7380844. 

[2]  R. Dreżewski and J. Solawa, “The application 
of selected modern artificial intelligence 
techniques in an exemplary strategy game,” 
Comput. Sci., vol. 192, pp. 1914–1923, 2021 

 [3] K. Dill, “A Game AI Approach to Autonomous 
Control of Virtual Characters”, in 
Interservice/Industry Training, Simulation, 
and Education Conference (I/ITSEC) 2011, 
2011, no. 11136, pp. 1–11. 

[4] Y. Hossain and L. Zaman, “NCCollab : 
collaborative behaviour tree authoring in 
game development”, in Multimedia Tools and 
Applications, 2022. 

[5] J. Norstad, “An Introduction to Utility Theory”, 
Game AI, pp. 67–80, 2005, doi: 
10.1201/9780429055058-6. 

[6]  N. C. Hou, N. S. Hong, C. K. On and J. Teo, 
"Infinite Mario Bross AI using Genetic 
Algorithm," 2011 IEEE Conference on 
Sustainable Utilization and Development in 
Engineering and Technology (STUDENT), 

Semenyih, Malaysia, 2011, pp. 85-89, doi: 
10.1109/STUDENT.2011.6089330. 

[7]  A. K. Adisusilo, M. Hariadi, A. Zaini, S. M. 
Susiki, “Optimizing of Boxing Agent 
Behaviour Using Genetic  Algorithm,” Jurnal 
Ilmiah Kursor  Vol 7,no. 2, pp. 55–6,2013 

[8]  E. Soares de Lima, B. Feijó and A. L. Furtado, 
"Procedural Generation of Quests for Games 
Using Genetic Algorithms and Automated 
Planning," 2019 18th Brazilian Symposium 
on Computer Games and Digital 
Entertainment (SBGames), Rio de Janeiro, 
Brazil, 2019, pp. 144-153, doi: 
10.1109/SBGames.2019.00028. 

[9] P. Charoenkwan, S. W. Fang, and S. K. 
Wong, “A study on genetic algorithm and 
neural network for implementing mini-
games”, Proceedings - International 
Conference on Technologies and 
Applications of Artificial Intelligence, TAAI 
2010, 2010, pp. 158–165. doi: 
10.1109/TAAI.2010.35. 

[10]  C. S. Lin and C. K. Ting, “Emergent tactical 
formation using genetic algorithm in real-time 
strategy games”, Proceedings - 2011 
Conference on Technologies and 
Applications of Artificial Intelligence, TAAI 
2011, 2011. doi: 10.1109/TAAI.2011.63. | 
IEEE Conference Publication | IEEE Xplore 

[11] N. R. Widiyanto, S. M. S. Nugroho, and M. H. 
Purnomo, “The Calculation of Player ’ s and 
Non-Player Character ’ s Gameplay Attribute 
Growth in Role-Playing Game with K-NN and 
Naive Bayes”, 2020 International Conference 
on Computer Engineering, Network and 
Intelligent Multimedia, 2021, Cenim 2020, 
pp. 103–110 

[12] Y. Jiang, B. Xiao, B. Yang, and X. 
Guo,”Study of plant animation synthesis by 
unity3D”, IFIP Adv. Inf. Commun. Technol., 
vol. 452, pp. 344–350, 2015, doi: 
10.1007/978-3-319-19620-6_39. 

[13] J. Wang and W. Zhu, “Design and 
Implementation of Virtual Animation Based 
on Unity3D”, 2nd International Seminar on 
Artificial Intelligence, Networking and 
Information Technology (AINIT), 2021, pp. 
667–669,doi: 
10.1109/ainit54228.2021.00134. 

[14] H. Jeon, E. Chae, and H. Pak, “Study of 
Camera Path and Motion Data Creation for 
UNITY 3D Game Engine”, vol. 65, pp. 13–16, 
2014, doi: 10.14257/astl.2014.65.04. 

[15] K. Dill, E. R. Pursel, P. Garrity, and G. 
Fragomeni, “Design Patterns for the 
Configuration of Utility-Based AI”, 
Interservice/Industry Training, Simulation, 
and Education Conference (I/ITSEC) 2012, 
2012, no. 12146, pp. 1–12 



ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online) 
Volume 13, Issue 2, July 2024 

 
Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 404 

 

[16] S. N. Sivanandam and S. N. Deepa, 
“Introduction to Genetic Algorithms”, 
Springer Science & Business Media, 2007. 

[17] P. Bonanno and P. A. M. Kommers, ”Gender 
differences and styles in the use of digital 
games” , vol. 25, no. 1, 2005. 

[18] R. Festl, M. Scharkow, and T. Quandt, 
"Problematic computer game use among 
adolescents, younger and older adults," 
Addiction, vol. 108, no. 3, pp. 592–599, 2013, 
doi: 10.1111/add.12016. 

[19] W. Frencken, K. Lemmink, N. Delleman, and 
C. Visscher, "Oscillations of centroid position 
and surface area of soccer teams in small-
sided games”, Eur. J. Sport Sci., vol. 11, no. 
4, pp. 215–223, 2011, doi: 
10.1080/17461391.2010.499967. 

[20] B. K. Khotimah, M. Miswanto, and H. 
Suprajitno, “Optimisation of feature selection 
using genetic algorithm in naïve Bayes 
classification for incomplete data”, Int. J. 
Intell. Eng. Syst., vol. 13, no. 1, pp. 334–343, 
2020, doi: 10.22266/ijies2020.0229.31. 

 
 
 
 
 
 


