
ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 2, July 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 394

AN IMPROVED UTILITY-BASED ARTIFICIAL INTELLIGENCE TO
CAPTURE NPC BEHAVIOUR IN FIGHTING GAMES USING

GENETIC ALGORITHM

Supeno Mardi Susiki Nugroho1, Lazuardi Ya'qub Affan1,2, Mauridhi Hery Purnomo1

1Computer Engineering, Institut Teknologi Sepuluh Nopember
2 Calcatz Studio

email: mardi@its.ac.id, lazuardiyaffan@gmail.com, hery@ee.its.ac.id

Abstract

In computer fighting games, the ability of players to play with Non-Player Characters (NPC) is essential. A
poorly designed NPC leads to poor player engagements and unsatisfactory playing experiences due to
predictable behaviors. A utility-based AI is game designer depended, thus leads to less-varied selections,
therefore we propose an improved utility-based AI selected by genetic algorithm (GA) to determine the utility
functions of each NPC action. The fitness functions of GA are determined by a rating method named ELO
ratings which is usually used in chess games. The variety of decisions of human-like NPCs are generated
by utility-based AI, which employ many forms of functions for calculating the value of the AI utility.
Tests on chromosomes in each generation were also carried out to obtain different responses. The Pearson
Correlation coefficient is used to obtain an analysis of the influence of each assessment variable. The
satisfaction level continues to increase along with the generation iteration with an average of 0.1443 which
demonstrates the influences the satisfaction level of game users.
Keywords : Non Player Character, Behavior NPC, Utility based function, Genetic Algorithm, Satisfaction
level

Received: 04-07-2024 | Revised: 17-07-2024 | Accepted: 22-07-2024
DOI: https://doi.org/10.23887/janapati.v13i2.82040

INTRODUCTION

In a game, especially those with action
genres such as fighting, the feature of playing with
a Non-Player Character (NPC) must be that a
player can still play the game even without any
other players. An NPC will feel more natural and
engaging to play with if the action is not easy to
predict, such as when he will chase, attack,
defend, or launch an ultimate attack. The method
that is used to achieve those abilities, that is
artificial intelligence (AI), is implemented in the
NPCs as their brain [1]. AI in modern games
generally leads to three needs: the ability to move
the character, to make decisions on movements
or actions, and to think tactically or strategically
[2]. In virtual characters, the characteristics most
needed to be developed on AI are as follows.
1. Autonomous; so that NPCs can function

effectively even without input from a human at
run time.

2. Reactive, so that NPCs are conscious and
responsive to changing situations.

3. Nondeterministic, so NPCs may give different
outcome/behavior upon the same
environments.

4. Cultural Authentic is behaving as an individual
of the culture depicted.

5. Believable that it should keep the immersion
by behaving as human beings [3]

The demand from players for challenging
gameplay with intelligent interaction with the NPC
over time led to the further development of
methods used by game developers for
implementing AI in the game’s NPC. In popular AI
methods such as Behaviors Tree (BT) ([4],
defining problematic NPC Behaviors will cause
the design of AI Behavior structures to be more
complicated as it adds more branches and little
changes (a slight change in a node may lead to
changes on other nodes). In addition, decision-
making is also less varied because it is limited
only to the branching condition of each node.
Therefore, AI methods are needed to make
games easier to design, but they can generate
complex behavior with more varied decision
making, i.e., low predictability in the perspective
of the players.

RELATED WORK

One of AI design methods for NPC in
games is utility-based AI [5]. Utility-based AI
works by identifying the action options found on
the AI and taking the best option (priority) by
scoring the usefulness of each action option

https://doi.org/10.23887/janapati.v13i2.82040

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 2, July 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 395

based on a particular state, called utility. This
makes utility-based AI much more comfortable to
design since scoring calculations for each action
have no strict relation to other actions. In addition,
decision-making is also more varied since the
choice of evaluation process is calculated using
continuous functions. Such algorithms have been
used previously in similar task such as the control
of a video game character such as the research
by Ng Chee Hou et al [6], where they use a
genetic algorithm to create a finite state machine
to play Mario Bros competitively, which shows
that this algorithm is a viable option for controlling
video game characters. Anang et al [7] research
optimal GA-based boxing movements. Another
study by Edirlei et al [8], where it describes a
dynamically generated quest system which
produce game quests that is indistinguishable
from one made by a professional game designer,
this study allows more dynamic storylines where
allow a more personalized experience. Another
study by Charoenkwan et al [9], also shows that
such algorithms can also be used to make games,
or mini games of existing games, but it also shows
the limitation of such methods where complicated
behaviors will cause unpredictable results,
another result that they found is the primacy of
fitness function which is one of the most important
factors in using a genetic algorithm. Lastly a study
by Lin et al [10], which shows emergent properties
of such algorithms, where it creates tactical
formations which would allow such games AI to
adapt to unforeseen environments, this not only
shows that such algorithms could adapts based
on existing conditions, but also could arrive at
optimal solutions for such tasks.

This paper proposes an improved utility-
based AI which the curves of actions are
generated by chromosomes chosen by the GA
function.

METHOD

A fighting game prototype is used in this
research to implement the proposed method as
illustrated in Fig. 1. The game consists of fighting
game elements in general, such as face-to-face
battle, health points, battle timer, attack combos,
attack parrying, and ultimate attack.

In this game prototype system, there are
two main phases. Those are procedures in the
initialization phase and those in execution phase,
as described in Fig. 2. In the initialization phase,
the process begins with initializing population
data using genetic algorithm. Next is the process
of initializing utility-based AI as an evaluator in
decision-making of action to be performed by the
NPC. The process is then continued with the
initialization of the initial condition for each NPC.

In addition, various system components used,
such as a timer (with a time limit of 120 seconds),
game environment or stage, and user interfaces,
are also prepared in this phase. Inside the user
interfaces, users can view the attributes of each
NPC, including the chromosome index of the
population, ELO Ratings, the utility values of
each action, the values of each parameter of
consideration, and the history of actions that the
NPC has done.

The next phase is the execution phase, the
core phase of how the game works. At this
phase, there is a cycle of the system that will
keep checking events of the core gameplay,
including player input command, time calculation,
artificial intelligence process with utility-based AI,
population evaluation process with a genetic
algorithm, and other events including the
appearance of healing items (the item that is
used to increase the health point of the NPC)
which is also an element that influences the flow
of the game. In the implementation phase, an
interruption process can pause the game for a
moment or stop the game completely. NPC
conditions checking is used to determine the
events occurring in the game. For example, the
determination of whether the fight is in progress,
and checking whether the game is over or not is
determined by the health point of each player.
The game ends if a unit health point reaches zero
or the time runs out.

IMPLEMENTATION OF THE CHARACTER’S
FIGHTING GAME ELEMENT DESIGN

The design of character attributes as
playable and non-playable (NPC) is based on
previous works on characters’ gameplay
attributes [11]. Since the player encounters the
enemy in the fighting game, the character
attribute design is applied for both player and
NPC as a specific enemy gameplay attribute in
[11] is designed for multiple enemies. In our
fighting game design, we limit the attack type to
a physical attack that substitutes the element list.
This type of attack is as follows:

• Chain Strong Attack
• Chain Normal Attack
• Ultimate Attack
We design attribute assignment input as in

table 1. The distribution of Player HP follows
equation 1. As HP increases based on the
player’s level, the HP’ which is the targeted HP,
increases according to the current HPi value and
the next level(i+1).

zP′	 = 	∑ HP("#$) +)HP("#$) −HP"+
&!
"'((1)	

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 2, July 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 396

P"C!"#$!"$ =
%#"$%!"

&%#"$&'%#"$''...'	%#"$%!"*
												(2)	

D(𝑚𝑎𝑥+", St$) = /(𝑚𝑎𝑥+" − St,)-													 (3)	

St′ =

⎩
⎨

⎧∑ !"%,$0	1(345!",!"%)7$!",!"%
()
%$& #$!"	

∑ !"%,$0	1(345!",!"%)7-,!"%
()
%$& #-	

∑ !"%,$0	1(345!",!"%)78,!"%
()
%$& #8	

9	,:";<=>,+<

							 (4)	

The character statistics distribution

follows equations 2-4. Equation 2 is the attribute
increase probability with ist as the contents of
statistics to assign, which value is shown in
Table 1 at no. 6.

For example, according to Table 1, the P(C!"#8)
is the probability of statistics to assign as
‘Strength’, P(C!"#-) is the probability of stats to
assign as ‘Endurance’. C!"#8	is the number of
‘Strength’ values, and C!"#-	is the number of
‘Endurance’ values derived from Table 1.

Each attribute is randomised with results
limited based on equation (3). D is the distance
within the highest attribute value of x and the
current p value. The 𝑚𝑎𝑥+" value in equations (3)
and (4) depicts the desired maximum attribute
value. Each level progression of the player is
depicted by St$, which will continue rising to its
highest value Np. St$ is the attribute value that
increases every level i.

Figure 1. Fighting Game Used in The Analysis

Table 1. Input Data for Player Gameplay Attributes Calculation

No. Variable Input
1. Start Level 1
2. Max Level 100
3. Start HP 159
4. Next HP 163
5. List Element [‘Chain Strong Attack’, ‘Chain Normal Attack’, ‘Ultimate Attack’]
6. List Stats Name [‘Strength’, ‘Endurance’, ‘Speed’, ‘Luck’]
7. Max Stats Value [74, 63, 65, 60]
8. Stats to Assign [2, 1]

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 2, July 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 397

Figure 2. Research Procedures in System Design

PROPOSED UTILITY-BASE AI FOR NPC
BEHAVIOUR

The NPC acts as an opponent in the game
used in this study. To be able to work in
accordance with its role as an opponent, it takes
artificial intelligence (AI) that will act as the brain
of the NPC. In this research, an AI process for
decision-making of action using utility-based AI is
applied.

In its application, the first thing to do is to
determine the actions that can be done by the
character, along with their consideration
parameters. Each action has a utility value
against one parameter of consideration.
However, it is not impossible that action also has
more than one consideration parameter.

Therefore, the expected utility calculation
is used with the following formula.

 𝐸𝑈 = ∑ 𝐷!"
!#$ 𝑃! (5)

In Eq. (5), D is the utility value of an action

based on each parameter i, and P is the
probability of the utility. This calculation is done

for each action, and the action with the most
significant expected utility will be chosen. This is
called the Principle of Maximum Expected Utility
[5]. This value can also be divided by the number
of consideration parameters to get the average
value.

The following is a list of actions that
characters can carry out.

1. Chain Strong Attack
2. Chain Normal Attack
3. Chase Enemy
4. Chase Healing Item
5. Parry
6. Ultimate Attack
It is necessary to determine the forms of

the utility functions for each consideration
parameter in all actions. These functions will be
modified using genetic algorithm later. Utility
functions are created using a feature of Unity 3D
called Animation Curve [12]-[14]. It is an object
that holds a collection of keyframe objects
located in a two-dimensional cartesian
coordinate system. The keyframe’s position can
be moved using a handle, allowing the user to

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 2, July 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 398

create a curve that can be used as a function to
evaluate value over time.

Using the Animation Curve, utility functions
for all actions with each parameter of
consideration are normalized based on the min-
max values of their respective parameters. Those
values are normalized into a range from zero as
the minimum possible and one as the maximum
possibility.

The following list explains the utility value
calculation from each action based on their
respective parameter.

1. Chain Strong Attack
Utility functions for this action are

determined by distance and elapsed attack time
of the enemy as can be seen in Fig. 3. The enemy
distance parameter derived from the normal
Gaussian distribution with its apex lies at 0.3 as
in Figure 3a. This kind of attack has a longer
execution time thus it is better utilized in the
maximum distance of this attack can be
delivered. Also, regarding the enemy executed
attack time or after idling for a relatively long time
as seen in figure 3b, which shows reverse
parabolic function.

2. Chain Normal Attack
The utility function for the action has a

short execution time which is better for utilizing
this action at a short distance. As shown in figure
4, we design a utility function with an exponential
decrease as further the distance of the enemy.
The time parameter is derived from the sinusoid
function that provides maximum utility value
when the enemy finishes their attack or as a
follow-up to another action.

3. Chase Enemy
This action determines whether chasing

the enemy to engage then is more necessary
than other chase actions. Enemy distance and
character health point condition determine its
utility value. A higher distance means the enemy
is likely out of reach of the character attack range,
thus motivating chasing the enemy. The high
health point condition means the character is
more confident to be engaged.

4. Chase healing item
The action of chasing a healing item affects

the character health point condition, and the
utility value is based on a sigmoid function which
denotes that a lower health condition will
motivate the character to chase healing item
action. The higher enemy health point linearly will
motivate higher utility value for this action. Lower
distance from the character to the healing item
position motivates the character to chase the
action of the healing item.

5. Parry

Parry action enables the character to parry
an enemy attack with its utility value derived from
the distance s from the enemy elapsed attack
time. As the distance from the character is lower,
this will make the parry action utility value higher,
as the enemy elapsed attack time is based on
gaussian distribution that makes the utility value
on its apex at 0.15 on normalized time.

6. Ultimate Attack
This ultimate attack action can be

performed if a certain condition is fulfilled. This
condition is determined by the power point
gained from successful chain normal and strong
attacks. Just like the previous attack, the distance
of the enemy is paramount to successfully
executing this attack. Thus, the utility value
based on its distance is derived based on the
optimal distance of attacking with this action.
Furthermore, the utility function is also
determined by power value based on the binary
step function since this action can only be
performed if a valid power condition is fulfilled.

Each calculation and evaluation of action
options should be performed at run time, in the
sense that utility values are not specified when
the scenario is being designed but evaluated
based on the exact situation occurring at the
simulation time [15].

Proposed Genetic Algorithm to Optimize
Utility Functions

GA is a problem-solving method that uses
genetics as a problem-solving model. This
method is a technique for finding approximate
solutions to optimization problems by using the
fitness function to get a better solution over each
generation [16]. The architecture of GA
implementation in Fighting Game by mapping
each NPC character unit (Chromosome) to Utility
Function (Gene) can be shown in Fig. 4. NPC
characters in this game can influence AI.

The chromosome is modelled as an object

that stores a collection of utility functions for	all
actions that stores a collection of utility functions
for	 all actions based on each consideration
parameter. Thus, any utility function can be
called a gene.

A population of thirty chromosomes was
used as the initial population. The initial
chromosome has utility functions that have been
created manually. The twenty-nine initial
chromosome copies are created to make the
other twenty-nine chromosomes. A light mutation
is then applied to those twenty-nine new
chromosomes by changing one gene (one form
of function) of each new chromosome

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 2, July 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 399

 	

(a) 																																																																																																								(b)	

Figure 3. Utility Functions for The Action of Strong Chain Attack (A) Based on The Parameter of
Enemy Distance (B) Based on The Parameter of The Enemy Has Elapsed Attack Tim

Figure 4. Design on GA Implementation in Fighting Game by Mapping Each NPC Character Unit
(Chromosomes) to Utility Functions (Gene)	

Defining the Fitness Function

The way to evaluate whether AI works
correctly in a fitness function system is defined.
The system must be robust, designed to provide
a comparative, and capable of evaluating where
new individuals are often added or removed. The
system should also allow for variations in
individual performance, which concludes the
outcome of many fights, rather than relying on
one performance condition (win or lose) as a
basis for ranking since a match itself is not
entirely dependent on one NPC’s actions. The
second NPC’s (opponent) reaction contributes
significantly to success or failure. In addition, the
actions of each NPC will vary so that each battle

between each pair will be different. Therefore, the
ELO Rating system works because the
performance of NPCs in any match is a random
variable in a normal distribution. The NPC’s
overall rating must also be considered with the
enemy's ability, winning, and losing outcomes.
An equation is then applied to the rating to predict
the NPC’s winning probability. The result of the
equation is then used to calculate how many
points will be added to the winner’s rating and
how many points will be subtracted from the
loser’s rating. The way to calculate the expected
score of NPCs, the following formulas are used.

 𝐸%$ =
$

$&$')*+,-*+.//122
 (6)

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 2, July 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 400

	

 𝐸%(=
$

$&$')*+,-*+.//122

 (7)

In Eq. (6) and Eq. (7), P1 and P2 are the
first NPC and second NPC. R1 and R2 are the
ratings of both NPC. After the match between two
NPCs, the ratings will be adjusted to the amount
proportional to the difference between the
expected score and the winning result. The
formula used is as follows.

𝑅%$) = 𝑅%$ + 𝐾(𝑆%$ − 𝐸%$) (8)

	
In Eq. (8), K is a factor that controls the

strength of an adjustment, and S is a Boolean
(zero or one), which indicates victory or defeat.
Every 30 chromosomes in the population will be
given 1000 ELO Ratings. More vital NPCs are
expected to reach ELO Ratings of up to 1000.
Conversely, weaker NPC has ELO Ratings below
1000. A round-robin tournament is held between
all the existing chromosomes to find the ELO
Ratings for each chromosome. Each of the 30
chromosomes will fight 30 others except itself,
which counts as 29.

Each victory of a chromosome will
increase the ELO Ratings of the chromosome. In
contrast, ELO Ratings will be reduced if the
chromosome loses. The difference in the addition
or subtraction of ELO Ratings is applied from the
calculation of the ELO Rating formula described,
with a K factor value of 50.

Determine which chromosomes will
survive to the next generation and which
chromosomes will be used for crossovers are
needed. After calculating through a round-robin
tournament, sorting populations makes the
selection based on ELO Ratings. From the sorted
population, one-third of chromosomes with the
highest ELO Ratings are taken to form a new
population. In this case, out of a third of the
population of 30 chromosomes, the new
population consists of 10 chromosomes.

After obtaining one-third of the best
chromosomes as the new population through the
selection process, ten pairs of chromosomes are
randomly selected. Against those ten pairs of
chromosomes are then crossovers to get two
new offspring.

That way, the population, which is one-
third of the initial population (10 chromosomes),
will be added with two new offspring from each
chromosome pair with a total of 20 new
chromosomes. So, the population becomes as

much as the original number, which is 30
chromosomes.

After getting 20 new chromosomes
through a crossover process, the chromosomes
are not directly added to the population, but the
mutation is done first. The mutation is done by
altering the gene by randomly changing the
position and gradient of the keyframe from the
selected function's animation curve. The value of
the mutation rate used in implementing this GA is
0.25.

This means that a quarter of all the genes
in the new chromosomes are altered. A quarter
of these genes are randomly selected from any
chromosome so that each chromosome may
have a different number of mutated genes. Once
the mutation is done, the new chromosomes are
inserted into the population, resulting in a new
population for the next generation. ELO Ratings
of the new population are returned to 1000 for the
last tournament to produce new ELO Ratings.
Every GA process that has been described is
continuously repeated until it reaches the 40th
generation.

Testing NPC Against Human

AI system testing is conducted to provide data
on whether the NPC that implements utility-
based AI by utilizing GA has given the most
optimized utility functions at each action to
produce the best behavior. Therefore, in the AI
system testing, the ability of AI is tested by
comparing the fitness value of each of the best
chromosomes in each generation by re-holding a
round-robin tournament. The best chromosome
in a generation is the chromosome that has the
highest ELO Ratings.

After several best chromosome samples are
produced for each generation, to find a
challenging AI when opposed by human players,
human testing with 25 respondents of age above
thirteen years is carried out. The age range was
chosen because of the relatively hard difficulty
level of the game, and those older players can
better analyze and assess the behavior of the
AIs. Out of the 40 chromosome samples from
each generation, four samples representing the
first generation to the latest generation were
taken on the chromosomes in the 1st, 13th, 27th,
and 40th generations. Every tester (human
player) must then play these four chromosomes.
Each tester must record their win (Boolean with a
value of 1) or lose (Boolean with a value of 0)
status, score the difficulty level (on a scale of
five), and score the satisfaction level (on a scale
of five). The average result of the winning status,
difficulty level, and satisfaction level from all the
respondents can be seen in Table 2.

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 2, July 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 401

Table 2. The Average Result of The Winning
Status, Difficulty Level, and Satisfaction Level

Pae 1st

Gen
13th
Gen

27th
Gen

40th
Gen

Winning
Status

0.64 0.36 0.44 0.4

Difficulty
Level

2.77 3.34 3.81 3.87

Satisfaction
Level

3.41 3.49 3.79 3.84

Based on the data in Table 2,

chromosomes from the first generation to the
newest generation tend to have an increasing
value of difficulty level. It follows the expectation
that AI training using GA can produce
chromosomes that become more vital as the
generation iterates. The decrease also follows
the increasing value of the difficulty level in the
winning status of human players. Although the
value of winning status from the 13th generation
to the 27th generation increased, the values
afterward continued to decrease. While the value
of satisfaction level continuously increases as
generation iterates.

Correlations between winning status,
difficulty level, and satisfaction level need to be
measured. Calculations of the correlation
coefficient between winning status and difficulty
level, winning status and satisfaction level, and
difficulty level are then performed. The
correlation coefficient calculation result is then
analyzed to deduce the criteria for challenging AI
to be played by human players. The formula used
to calculate the correlation coefficient is
Pearson's correlation coefficient [17]–[19].

Based on Table 3, the winning status and
the difficulty level have a strong negative linear
correlation (-0.504), so the more complicated an
AI is, the lower the possibility of a human player
winning the match. Winning status and
satisfaction level have a weak negative linear
correlation (-0.037). Hardly any correlation
indicates that winning status has almost no effect
on satisfaction level because there are some
testers who are satisfied when winning, while
others are not satisfied when winning. While
difficulty level and satisfaction level have a
medium positive linear correlation (0.455), which
means the testers are more satisfied when faced
with a more challenging opponent.

Table 3. Correlation Between Winning Status,
Difficulty Level, and Satisfaction Level

Measured Correlation Correlation
Winning Status and Difficulty

Level
-0.504

Winning Status and
Satisfaction Level

-0.037

Difficulty Level and
Satisfaction Level

0.426

RESULT AND DISCUSSION

AI system testing is conducted to provide
data on whether the NPC that implements utility-
based AI by utilizing GA [17], [18] has given the
most optimized utility functions at each action to
produce the best behavior. Therefore, in the AI
system testing, the ability of AI is tested by
comparing the fitness value of each of the best
chromosomes in each generation by re-holding a
round-robin tournament. The best chromosome
in a generation is the chromosome that has the
highest ELO Ratings.

Round robin tournament needs to be done
again because the ELO Ratings used for fitness
apply only to chromosome comparisons in one
generation that has undergone a round-robin
tournament in the same generation. The best
chromosome samples are required in each
generation to be held round-robin to produce
ELO Ratings on each of these chromosomes to
compare fitness (ELO Ratings) in different
generations. After the round-robin tournament,
the ELO Rating graph of the representational
chromosomes of each generation is shown in
Figure 5. The winning percentage graph is also
shown in Figure 6.

The expected result is the increasing value
of ELO Ratings from the first generation to the
last generation (40th generation) caused by
chromosomes which continuously improve their
utility functions of each action in every iteration of
its generation. In Fig. 5, the value of ELO Ratings
as generation increases develops lucratively but
results in a new peak or maximum value at
specific points. This shows that the training
process using GA can produce chromosomes
with a more vital ability as generation increases,
even though several generations of them must
decrease ELO Ratings.

The graph in Fig. 6 also has a pattern like
the ELO Rating graph in Fig. 5. The percentage
of winnings on each chromosome as the
fluctuating generation grows, resulting in a new
top or maximum value at specific point.

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 2, July 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 402

Figure 5. Relation of ELO Ratings (Fitness) Obtained Through Round-Robin Tournament of Each

Representative of The Best Chromosomes in Each Generation
	

Figure 6. Winning Rate Obtained Through Round-Robin Tournament of Each Representative of

The Best Chromosomes in Each Generation

Despite having the same pattern, the two
graphs do not always have the same increasing
or decreasing behavior. For example, an
increase in value between the 4th generation to
the 5th generation of the ELO Rating graph
precisely followed by the decreasing value of
the winning percentage of the 4th generation to
the 5th generation. This occurs in accordance
with the principle of ELO Ratings that the
performance of a player (in this context is AI) is
a random variable of a normal distribution,
where in addition to considering the results of
winning and losing, ratings or the overall ability
of both an NPC and it is opponent also a
consideration. It is good for NPC’s action in
game, which must mimicking human behavior.

CONCLUSION

Based on the results of implementation and
experimentation, some conclusions can be drawn
as follows:

1) AI system testing results show that the
training process using GA, with NPC as a
chromosome model and the utility functions of
each action are modelled as genes, and ELO
Ratings as the fitness function can produce AI
chromosomes with more vital ability as generation
iterates. Although several generations of them
experienced decreasing ELO Ratings, as
generation iterates, it creates new chromosomes
with new highest ELO Ratings ensure
generations.

2) Based on experiments on the
chromosomes in the 1st, 13th, 27th, and 40th
generations, each generation has divergent
responses to each assessment on Winning
Status, Difficulty Level, and Satisfaction Level. As
in the first generation to the latest generation, the
value of the difficulty level on the chromosomes
increases by an average of 0.3637. This is
relevant to the aim of this research that the
implementation of AI using GA can produce
obtrusive chromosomes as generations increase.

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 2, July 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 403

However, the winning status value tends to
decrease, although the winning status value from
the 13th generation to the 27th generation literally
increased by 0.08, then decreased by 0.09%
(from the 27th generation to the 40th generation).
While the value of the satisfaction level continues
to increase along with the generation iteration
with an average of 0.1443.

Future works will be focused on the
creation of utility-based AI with more detailed
actions and more consideration parameters so
that the chosen decisions are more precise and
to add more characters to the game with a
balanced ability since character variation and
character selection is an important feature [20] in
a fighting game. In addition, things to consider in
the development of the Fighting Game regarding
the intelligent behavior of independent NPC
agents is comparing several approaches,
including hybrid methods, by observing learning
speed instead of the greatest fitness function
values only.

ACKNOWLEDGMENT

This work was supported by Institut
Teknologi Sepuluh Nopember as a part of the
Upgrading Program on Undergraduate Thesis.

REFERENCES
[1] Christyowidiasmoro, R. C. A. Putra, and S.

M. Susiki, “Measuring level of difficulty in
game using challenging rate (CR) on 2D
Real time Strategy Line Defense game”,
Proc. - 2015 Int. Electron. Symp. Emerg.
Technol. Electron. Information, IES 2015, pp.
218–222, 2016, doi:
10.1109/ELECSYM.2015.7380844.

[2] R. Dreżewski and J. Solawa, “The application
of selected modern artificial intelligence
techniques in an exemplary strategy game,”
Comput. Sci., vol. 192, pp. 1914–1923, 2021

 [3] K. Dill, “A Game AI Approach to Autonomous
Control of Virtual Characters”, in
Interservice/Industry Training, Simulation,
and Education Conference (I/ITSEC) 2011,
2011, no. 11136, pp. 1–11.

[4] Y. Hossain and L. Zaman, “NCCollab :
collaborative behaviour tree authoring in
game development”, in Multimedia Tools and
Applications, 2022.

[5] J. Norstad, “An Introduction to Utility Theory”,
Game AI, pp. 67–80, 2005, doi:
10.1201/9780429055058-6.

[6] N. C. Hou, N. S. Hong, C. K. On and J. Teo,
"Infinite Mario Bross AI using Genetic
Algorithm," 2011 IEEE Conference on
Sustainable Utilization and Development in
Engineering and Technology (STUDENT),

Semenyih, Malaysia, 2011, pp. 85-89, doi:
10.1109/STUDENT.2011.6089330.

[7] A. K. Adisusilo, M. Hariadi, A. Zaini, S. M.
Susiki, “Optimizing of Boxing Agent
Behaviour Using Genetic Algorithm,” Jurnal
Ilmiah Kursor Vol 7,no. 2, pp. 55–6,2013

[8] E. Soares de Lima, B. Feijó and A. L. Furtado,
"Procedural Generation of Quests for Games
Using Genetic Algorithms and Automated
Planning," 2019 18th Brazilian Symposium
on Computer Games and Digital
Entertainment (SBGames), Rio de Janeiro,
Brazil, 2019, pp. 144-153, doi:
10.1109/SBGames.2019.00028.

[9] P. Charoenkwan, S. W. Fang, and S. K.
Wong, “A study on genetic algorithm and
neural network for implementing mini-
games”, Proceedings - International
Conference on Technologies and
Applications of Artificial Intelligence, TAAI
2010, 2010, pp. 158–165. doi:
10.1109/TAAI.2010.35.

[10] C. S. Lin and C. K. Ting, “Emergent tactical
formation using genetic algorithm in real-time
strategy games”, Proceedings - 2011
Conference on Technologies and
Applications of Artificial Intelligence, TAAI
2011, 2011. doi: 10.1109/TAAI.2011.63. |
IEEE Conference Publication | IEEE Xplore

[11] N. R. Widiyanto, S. M. S. Nugroho, and M. H.
Purnomo, “The Calculation of Player ’ s and
Non-Player Character ’ s Gameplay Attribute
Growth in Role-Playing Game with K-NN and
Naive Bayes”, 2020 International Conference
on Computer Engineering, Network and
Intelligent Multimedia, 2021, Cenim 2020,
pp. 103–110

[12] Y. Jiang, B. Xiao, B. Yang, and X.
Guo,”Study of plant animation synthesis by
unity3D”, IFIP Adv. Inf. Commun. Technol.,
vol. 452, pp. 344–350, 2015, doi:
10.1007/978-3-319-19620-6_39.

[13] J. Wang and W. Zhu, “Design and
Implementation of Virtual Animation Based
on Unity3D”, 2nd International Seminar on
Artificial Intelligence, Networking and
Information Technology (AINIT), 2021, pp.
667–669,doi:
10.1109/ainit54228.2021.00134.

[14] H. Jeon, E. Chae, and H. Pak, “Study of
Camera Path and Motion Data Creation for
UNITY 3D Game Engine”, vol. 65, pp. 13–16,
2014, doi: 10.14257/astl.2014.65.04.

[15] K. Dill, E. R. Pursel, P. Garrity, and G.
Fragomeni, “Design Patterns for the
Configuration of Utility-Based AI”,
Interservice/Industry Training, Simulation,
and Education Conference (I/ITSEC) 2012,
2012, no. 12146, pp. 1–12

ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online)
Volume 13, Issue 2, July 2024

Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI | 404

[16] S. N. Sivanandam and S. N. Deepa,
“Introduction to Genetic Algorithms”,
Springer Science & Business Media, 2007.

[17] P. Bonanno and P. A. M. Kommers, ”Gender
differences and styles in the use of digital
games” , vol. 25, no. 1, 2005.

[18] R. Festl, M. Scharkow, and T. Quandt,
"Problematic computer game use among
adolescents, younger and older adults,"
Addiction, vol. 108, no. 3, pp. 592–599, 2013,
doi: 10.1111/add.12016.

[19] W. Frencken, K. Lemmink, N. Delleman, and
C. Visscher, "Oscillations of centroid position
and surface area of soccer teams in small-
sided games”, Eur. J. Sport Sci., vol. 11, no.
4, pp. 215–223, 2011, doi:
10.1080/17461391.2010.499967.

[20] B. K. Khotimah, M. Miswanto, and H.
Suprajitno, “Optimisation of feature selection
using genetic algorithm in naïve Bayes
classification for incomplete data”, Int. J.
Intell. Eng. Syst., vol. 13, no. 1, pp. 334–343,
2020, doi: 10.22266/ijies2020.0229.31.

