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Abstract 

Lung cancer's high mortality rate makes early detection crucial. Machine learning techniques, especially 
convolutional neural networks (CNN), play a very important role in lung nodule detection. Traditional 
machine learning approaches often require manual feature extraction, while CNNs, as a specialized type 
of neural network, automatically learn features directly from the data. However, tuning CNN 
hyperparameters, such as network structure and training parameters, is computationally intensive. 
Bayesian Optimization offers a solution by efficiently selecting parameter values. This study develops a 
CNN classification model with hyperparameter tuning using Bayesian Optimization, achieving a 97.2% 
accuracy. Comparatively, Particle Swarm Optimization and Genetic Algorithm methods each resulted in 
96.4% accuracy. The research concludes that Bayesian Optimization is an effective approach for CNN 
hyperparameter tuning in lung nodule classification. 
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INTRODUCTION 

Cancer ranks as the leading cause of 
death globally. It can be found in almost all areas 
of the human body, including the prostate, brain, 
lungs, breast and stomach. Notably, lung cancer 
is a common type of cancer with a very high 
mortality rate [1]. According to the Global Cancer 
Statistics 2020 report, lung cancer caused more 
than 10 million deaths, accounting for about 18% 
of total cancer deaths, and accounted for about 
11.4% of the total nearly 19.3 million new cases 
diagnosed that year [2]. In the early stages, lung 
cancer symptoms are usually mild and often 
difficult to diagnose accurately. Because of this, 
many patients miss the best time for treatment 
after diagnosis. According to the literature, about 
68% of lung nodules can be detected correctly by 
a single radiologist, and this accuracy rate can be 
increased to 82% with consultation from a 
second radiologist [3]. Radiologists use 
computed tomography (CT) to scan the patient's 
chest and identify whether the lung nodule is 
benign or malignant, as lung nodules are small 
enough to be difficult to see normally [4]. Nodules 
are generally small in structure and can be less 
than 30mm in diameter, if a lung nodule exceeds 

or grows larger than this diameter it can be 
classified as a malignant mass. Then, nodules 
that measure between 5 to 30mm are possible to 
be benign or malignant, this has the possibility 
that lung nodules can become malignant as the 
size of the lung nodule increases. The criteria 
that can be characterized as malignant are 
shaped like a spike or lobulation, and if benign, it 
usually has signs of general calcification [5]. 

There are two approaches used in medical 
image analysis to classify lung cancer. The first 
approach uses machine learning algorithms that 
can learn and classify lung cancer based on 
features extracted from images. Then the second 
approach, by designing a deep learning model for 
lung cancer analysis. Then, various types of deep 
learning models exist Convolutional Neural 
Network (CNN) is the most widely used image 
and video classification model due to its ability to 
understand data hierarchically. Thus, it can see 
complex information from existing data. CNN has 
the advantage of automatically learning and 
extracting important patterns from images 
without manual feature coding. Therefore, CNN 
can classify effectively if the images have the 
same features [6]. Machine learning researchers 
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are required to make adjustments to the external 
configuration of data on the Convolutional Neural 
Network (CNN) model. Where hyperparameters 
have network structure and training parameters 
on CNN that must be optimized to get parameters 
that produce more accurate and efficient models 
[7]. Determining the optimal hyperparameters is 
a time-consuming computational process that 
affects the performance of the model. 
Researchers in the last few decades have made 
tremendous efforts toward machine learning. 
Important tasks such as data preprocessing, 
model selection, and hyperparameter adjustment 
require highly professional expertise. Thus, the 
complexity of these tasks looks complicated to 
understand [8]. 

Loey et al [9] applied Bayesian 
Optimization as a hyperparameter selection in 
the Convolutional Neural Network (CNN) model, 
this study aims to identify COVID-19 patients 
using X-ray image data. The study's results 
obtained the accuracy rate of the method is 96%. 
Then, Azeez et al [10] combined the 
Convolutional Neural Network (CNN) method 
with Multi-Resolution Segmentation (MRS) to 
determine object boundaries in urban 
environments. This research also applies 
Bayesian Optimization techniques in finding 
optimal hyperparameters in segmentation and 
feature extraction. The results show that the 
model is computationally efficient, with a training 
time of less than 25 seconds per epoch. Thus, it 
can achieve a high level of accuracy and excel in 
geometric quality, as well as in the extraction and 
separation of adjacent objects. Furthermore, 
Zheng et al [11] developed a prediction model for 
Metabolic Syndrome (MetS) with indicators used 
from Traditional Chinese Medicine (TCM) and 
simple biological indicators. Medical record data 
were collected in this study from 2020 to 2021, 
which included 2040 patients who visited the 
outpatient clinic of a traditional Chinese medicine 

hospital in Guangdong. This study resulted in a 
new model derived from Bayesian Optimization 
and eXtreme Gradient Boosting (XGBoost) that 
allows the BO-XGBoost model to identify 
nineteen key features covering three categories, 
namely TCM habits, TCM indicators, and bio-
information that have an influence on MetS 
prediction. 

Recently, the use of Bayesian optimization 
has been widely used in various fields to improve 
model accuracy. Then, in the field of 
classification and diagnosis, machine learning 
models such as Support Vector Machine, k-
nearest Neighbor, Naive Bayes, and Decision 
Tree have been utilized on leaf types [12] and the 
use of SVM in Rolling Bearing Fault diagnosis 
[13]. Furthermore, the use of Bayesian 
optimization as a predictor has been used in 
various applications including steering angle in 
the context of ADS [14] and predicted production 
from one oil well [15]. The previously mentioned 
research shows that the use of Bayesian 
Optimization as a method to search for optimal 
hyperparameters can effectively improve 
performance and accuracy across a wide range 
of applications. 

 
METHOD 

This study proposes a system that aims to 
find the optimal hyperparameter using the 
Bayesian Optimization on Convolutional Neural 
Network to classify lung nodules into benign, 
malignant, and normal classes. This research has 
three stages, namely dataset pre-processing, 
training phase, and testing phase. Then, this 
study uses data from The Lung Image Database 
Consortium (LIDC-IDRI) collection available on 
The Cancer Imaging Archive website. The 
dataset used in this study includes 1,018 scans 
from 1,010 patients about the lungs. Furthermore, 
the sequence of steps followed systematically in 
this study is shown in Figure 1. 

 
 

 
Figure 1. The Proposed Model’s Flowchart
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Dataset Preprocessing 
At this stage, pre-processing is performed 

before the data is used for model training, 
validation, and testing. Therefore, the image size 
is changed to 256 x 256 x 1 resolution according 
to the input tensor in the model. Next, the images 
were randomized to ensure an unbiased training 
process, and then divided in the proportion of 
60:20:20 for training, validation, and testing data. 
Then, the use of Gaussian Filter and Gabor Filter 
is applied to image enhancement. The Gaussian 
Filter serves to reduce noise and produce a 
smoother image, while the Gabor Filter is used to 
detect edges and textures, which are essential in 
feature extraction. 
 
 
Gaussian filter 

Gaussian Filter is widely used for 
smoothing images in a different way than 
average filters. The Gaussian filter gives greater 
weight to pixels closer to the center compared to 
pixels further away, different from the average 
filter which gives equal weight to all surrounding 
values. The size of the Gaussian filter is 
controlled by σ and its standard deviation. The 
advantages of the Gaussian filter lie in its soft 
transitions and distance-based weighting, 
whereas the mean and median filters that do not 
consider distance can cause artifacts in the 
image, especially with larger filters [16]. The 
formula for the Gaussian Filter can be expressed 
by the equation (1). 

The kernel value at pixels located at a 
distance of 𝑟 rows and 𝑐 columns from the center 
point are calculated as follows: 
 

𝑘!,# =	
1

2𝜋𝜎$ exp	(−
𝑟$ + 𝑐$

2𝜎$ ) (1) 

 
Gabor filter 

Gabor Filter has similarities with itself. A 
Gabor filter (𝐺(𝑥, 𝑦)) is a highly complex 
combination of sinusoidal with Gaussian 
envelopes in the spatial domain. A Gabor filter 
bank is a collection of multi-channel filters 
derived from a single parent wavelet through 
various scales and rotations, thus using a wide 
range of frequencies in the spatial domain. The 
orientation of the sinusoidal and Gaussian 
scatterers is set against the 𝑥 and (𝜎𝑥 and 𝜎𝑦). 
Gabor filters have a very similar system to human 
visuals and have proven to be very effective in 
representing and discriminating textures. The 
two-dimensional Gabor filter uses a Gaussian 
kernel as modulated by sinusoidal waves in the 
spatial domain, which can be defined as follows 
[17]: 

 

𝐺(𝑥, 𝑦) = 	
𝑓$

𝜋𝛾𝜂 exp	(−
(𝛼$𝑥%$

+ 𝛽$𝑦%$)exp	(−(2𝜋𝑓𝑥%) 
(2) 

 
Where: 
 

𝑥% = 𝑥	𝑐𝑜𝑠𝜃 + 𝑦	𝑠𝑖𝑛𝜃 (3) 

𝑦% = −𝑥	𝑠𝑖𝑛𝜃 + 𝑦	𝑐𝑜𝑠𝜃 (4) 
  

Each filter usually has a plane shape with 
a specific frequency bounded by relative 
Gaussian envelope functions α and β. In an 
image, it is necessary to extract features through 
a set of Gabor filters of various orientations and 
frequencies [17]: 
 

𝑓& = 𝑓'()/√2
&*+

, u = 0, 1, 2, …, U-1 (5) 

𝜃, =
-*+
.
𝜋, v = 0, 1, 2, …, V-1 (6) 

 
𝑓'() is the frequency that represents the 

highest value of γ and the ratio between the 
center frequency to the sharpness on the 
Gaussian major axis. The value of η represents 
the ratio of center frequency to sharpness on the 
Gaussian minor axis. U is the total number of 
scales, while V is the number of orientations [17]. 
 
Training Phase 

The training phase is a critical stage in 
developing a robust CNN model for lung nodule 
classification. During this phase, the model 
learns to identify and distinguish between various 
features of lung nodules by iteratively adjusting 
its parameters based on the provided training 
data. 
 
Convolution neural network 

Convolution neural network is an artificial 
neural network architecture that is often used for 
classification, detection, and diagnosis of lung 
nodules using data from computed tomography 
(CT) in computer vision [1, 18]. 
 

 
Figure 2. Architecture CNN 
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In the context of Convolutional Neural 
Network (CNN), there are several components 
that play a role in processing and making 
decisions on image data. These components will 
be explained in more detail as follows: 
The convolution layer is the main element in the 
CNN architecture that oversees receiving input 
images and extracting features from them. The 
convolution process occurs within this layer, 
producing a new image that reflects the features 
of the input image [19]. The formula used in the 
convolution process can be seen in equation (7). 
 
 

𝑄(0,1) =	BC𝐼(0,1)

.

03+

	⊙	𝐹(0,1)G + 𝐵1 (7) 

 
 

Activation function is a mechanism applied 
to modify data through the calculation of non-
linear functions. In CNN architecture, one of the 
most used activation functions is Rectified Linear 
Unit (ReLU). ReLU serves to eliminate negative 
values in the image and can increase the 
efficiency of computation time [19]. The formula 
for the ReLU activation function can be 
expressed by the equation (8). 

 
 

𝑅(𝑧) = 𝑚𝑎𝑥	(0, 𝑧) (8) 
 
 

Pooling layer is one of the elements in the 
architecture that serves to reduce the dimension 
of the feature map and speed up the computation 
process is pooling. There are two types of pooling 
that are commonly applied, namely max pooling 
and average pooling. Max pooling takes the 
maximum value from each pixel area of the 
image, while average pooling calculates the 
average value from each pixel area [19]. 

Dropout is an effective strategy in neural 
network algorithms to prevent overfitting is to use 
a combination of various architectures. 
Increasing the weight values may cause the time 
required for the testing process to become 
longer, which in turn may affect CNN's 
performance in the evaluation [19]. 

Fully connected layer is the last stage after 
convolutional layer and pooling layer, which 
serves as the final stage to classify the data into 
classes in the training process. In this layer, the 
pixel values that were previously a matrix are 
converted into a one-dimensional format [19]. 

Softmax layer is a commonly used 
activation function for data classification by 

determining the highest probability for each 
class. The value of the softmax function or the 
resulting probability is in the range between 0 and 
1 [19]. The formula used in the softmax operation 
can be found in equation (9). 

 
 

𝑝1(𝑥) =
(𝑒)!)
∑ 𝑒)"4
03+

 (9) 

 
 

Hyperparameter tuning using bayesian 
optimization  

Bayesian optimization is a method for 
optimizing hyperparameters that uses a stepwise 
approach [20]. This method is very effective in 
solving functions that require high computation. 
[21]. In addition, this method is suitable for 
functions that do not have a closed-form 
representation, do not provide a derived function, 
and can only be evaluated based on certain 
points [22]. The procedure to optimize the 
hyperparameters of Convolutional Neural 
Network (CNN) with Bayesian Optimization (BO) 
approach is shown in Algorithm 1. 
 
Algorithm 1 Bayesian Optimization 

Input: Objective function 𝑓(𝑥), 
Acquisition function 𝐴𝐹	(𝑥), 
initial set of observations 𝐷 =
S𝑥+, 𝑦5T, … , (𝑥6, 𝑦6) 

while: Stopping criterion not met do: 
1: Fit GP to observations 𝐷 
2: Find the next point for 

evaluation 𝑥67)8 by maximing 
the acquisition function: 

3: 𝑥67)8 = 𝑎𝑟𝑔𝑚𝑎𝑥	𝐴𝐹(𝑥	|	𝐷, 𝐺𝑃)  
4: Evaluate the objective function 

at 𝑥67)8: 
5: 𝑦67)8 = 𝑓(𝑥67)8)  
6: Update the set of observations: 
7: 𝐷 = 𝐷	(𝑥67)8, 𝑦67)8) 
8: If 𝑦67)8 is better than the current 

best solution 𝑦97:8 then: 
9:      𝑦97:8 =	𝑦67)8 

10:      𝑥∗ =	𝑥67)8 
end while:  

Output: Return best solution 𝑥∗ 
 

Gaussian processing is a technique 
developed based on Gaussian stochastic 
processes and Bayesian learning theory. It is an 
extension of the Gaussian probability distribution. 
The model that occurs in this Gaussian process 
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is a finite subset of random variables that have a 
multivariate Gaussian distribution [21]. The 
formula used in this gaussian process can be 
seen in the equation (10) 
 
 

𝑓(𝑥)	~	𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥%)) (10) 
 
 

Covariance function 𝑘(𝑥, 𝑥%) also often 
referred to as the "kernel", describes the 
"smoothness" of the process. The assumption is 
that if two points 𝑥 dan 𝑥% are adjacent, then the 
corresponding process results 𝑦 dan 𝑦% will also 
approach each other. The two points are then 
highly dependent on each other, which is not the 
absolute location or direction of separation. Then, 
the covariance function used is generally a 
Squared Exponential (SE) function commonly 
known as the Radial Basis Function (RBF) [21]. 

 

𝑘(𝑥, 𝑥%) = exp Z−
1
2𝜃$

‖𝑥 − 𝑥%‖$\ (11) 

 

Equation 11 shows that a decreasing 
relationship occurs in the square between the 
points. Then, the parameter θ is a scale that 
determines the decreasing length. Furthermore, 
kernel functions are often used in representing 
prior knowledge of the function [21]. In an 
experimental context, observations include 
normally distributed disturbances 𝜖 ∼ 𝑁(0, 𝜎2). 
The structure of the observation model is as 
follows [21]: 

 

𝑦 = 𝑓(𝑥) + 	𝜖 (12) 
 

The regression contained in the Gaussian 
process is usually called kriging, which can 
estimate the value of the objective function 𝑓(⋅) 
concerning the time step 𝑡 + 1 for each point 𝑥 
[21]. This estimation produces a normal 
distribution characterized by the mean 𝜇8	(𝑥) and 
the level of uncertainty 𝜎8	(𝑥). 

 

𝑃(𝑓8<+|𝒟+:8, 𝑥) = 𝒩(𝜇8	(𝑥), 𝜎8$(𝑥)) (13) 
 
 
Hyperparameter tuning using genetic 
algorithm 

Genetic algorithm is a method for 
hyperparameter search and optimization that 
uses the principle of natural selection. GA works 

on a population of individuals with chromosomes 
consisting of genes. Individuals are evaluated 
based on their fitness function. GA uses three 
main operators: selection to choose the best 
individual, crossover to combine two parents into 
offspring, and mutation to make small changes to 
genes. The main objective of GA is to find the 
optimal solution by evolving the chromosomes 
based on a predefined fitness function [23]. The 
procedure for optimizing the Convolutional 
Neural Network (CNN) hyperparameters with the 
Genetic Algorithm (GA) approach is shown in 
Algorithm 2. 
 
Algorithm 2 Genetic Algorithm 

Data: population of individuals; 
Result: best individuals; 
begin:  

1: 𝑡 = 0; 
2: Create the starting population – 

Pop(0); 
3: Perform individual evaluation – 

calculate the fitness function value 
for each individual in the population 
𝑃>; 

4: do 
5:      select individuals to form a new 

population 𝑃𝑜𝑝(𝑡) – selection; 
6:      carry out crossover operation; 
7:      Implement mutations in 

individuals; 
8:      Evaluate individuals; 
9:      Replacing the old population 

with the new population; 
10:     		𝑡 = 𝑡 + 1; 
11: while stop condition reached; 

end:  
 
 
Hyperparameter tuning using particle swarm 
optimization 

Particle Swarm Optimization, commonly 
referred to as PSO, is a technique for stochastic 
hyperparameter optimization inspired by birds 
searching for food. In PSO, birds (or particles) do 
not know the exact location of the food, but 
through an iterative process, they approach the 
food source. Each bird follows the most 
successful strategy in the group and considers 
the best position it has ever achieved. PSO 
updates the position and velocity of each particle 
to find the optimal solution with equations (14) 
and (15) [24]. Algorithm 3 shows the procedure 
for optimizing CNN hyperparameters using the 
PSO approach. 
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Algorithm 3 Particle Swarm Optimization 

Input: M → population size, 
ub, lb → domain (upper bound and lower bound) 
𝑫	 → Dimension 
c1, c2 → Personal and Global Learning Coefficient 
Maxlt → number of maximum iterations 

Output: The solution that has the best fitness value result 
 begin:  

1: Initially initialize particle positions and velocities randomly (𝑋) 
 Determine personal best (𝑝97:8) and global best (𝑔97:8) 
 for 𝑡 = 1 to Maxlt do 

2:       for 𝑖 = 1 to M do 
3:              set 𝑟+, 𝑟$, 𝑤 ∈ [0, 1]  
4:                      for 𝑗 = 1 to 𝑫 do                            
5:                            𝑉0,1(𝑡 + 1) = 𝑤𝑉0,1(𝑡) + 𝒄𝟏𝑟+ Z𝑝?7:8",! − 𝑋0,1(𝑡)\ + 𝒄𝟐𝑟$ Z𝑔?7:8! − 𝑋0,1(𝑡)\ 

6:                            𝑋0,1	(𝑡 + 1) = 𝑋0,1	(𝑡) + 𝑉0,1(𝑡 + 1) 
7:                                  if 𝑋0,1(𝑡 + 1) > 𝒖𝒃	𝒕𝒉𝒆𝒏 
8:                                        𝑋0,1(𝑡 + 1) = 𝒖𝒃 
9:                                  if 𝑋0,1(𝑡 + 1) < 𝒍𝒃	𝒕𝒉𝒆𝒏 

10:                                        𝑋0,1(𝑡 + 1) = 𝒍𝒃 
11:                       if 𝑓(𝑋0) 	≤ 𝑓S𝑝?7:8"T	𝒕𝒉𝒆𝒏 

                            𝑝?7:8" =	𝑋0 
12:       argmin(𝑝97:8) → 𝑔97:8 

end:  
 

𝑣0@8<+ = 𝑤 ∗ 𝑣0@8 + 𝑐+ ∗ 𝑟+ ∗ (𝑝𝐵𝑒𝑠𝑡0@ − 𝑥0@8 )
+ 𝑐$ ∗ 𝑟$ ∗ S𝑔𝐵𝑒𝑠𝑡A@ − 𝑥0@8 T 

(14) 

𝑥0@8<+ =	𝑥0@8 +	𝑣0@8<+ (15) 
 

At iteration 𝑡 and dimension d in the 
optimization search space, 𝑐1 and 𝑐2 are 
acceleration constants that give weight to the 
stochastic acceleration component. This 
component drives each particle towards its 
individual best position (𝑝𝐵𝑒𝑠𝑡𝑖𝑑) and global best 
position (𝑔𝐵𝑒𝑠𝑡𝑔𝑑). Value 𝑟+ dan 𝑟$ is a randomly 
distributed number in the range [0, 1]. 

 
 

𝑊 = 𝑤'()	 + (𝑤'06 +	𝑤'())

∗ log+>(𝑎 +	
10t
T'()

) (16) 

 
Where 𝑎 is a constant for evolutionary 

speed adjustment, with a value of 𝑎 = 1. 𝑤'06 dan 
𝑤'()  are the minimum and maximum weights, 
while 𝑡 is the iteration.  
 

RESULT AND DISCUSSION 
This chapter of results and discussion will 

highlight three main aspects: discussion on the 
results of preprocessing, hyperparameter 
experiments, and performance analysis. This 
research utilized RunPod's platform for a rental 
fee of $1.14 per hour to access higher-level 
resources for training and testing. Therefore, the 
resources used in training and testing must be 
adequate so that the performance and efficiency 
in testing the model can be optimized properly. 
 
Result Preprocessing 

The split data results have been presented 
in Table 1, it shows the distribution of lung nodule 
data used in this study, Then the data distribution 
is divided into three parts, namely training, 
validation, and testing. Data that is part of 
training, validation, and testing is classified into 
three categories, namely benign, malignant, and 
normal. The training subset was divided into 60% 
of the total images. Thus, there are 1,964 images 
categorized as benign, 3,149 images with 
malignant class, and 4,131 images labeled as 
normal class. Therefore, the total number of 
images that have been divided in the training 
subset is 9,244. Then, in the validation subset 
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with an image division of 20%. Thus, there are 
655 images in the benign class, 1,050 images in 
the malignant class, and 1,377 images in the 
normal class. Therefore, the total number of 
images in the validation subset is 3,082 images. 
While the testing subset is divided by 20% of the 
total data. Thus, there are 655 images in the 
benign class, 1,050 images in the malignant 
class, and 1,377 images in the normal class. 
Thus, this test subset has a total of 3,082 images. 
The image distribution of each subset plays an 
important role in the development and evaluation 
of the lung nodule detection model. 
 
Table 1. Distribution class train, validation, and 

test 
Classes Split Image Total 

Benign Train 
(60%) 

1964 9244 
Malignant 3149 
Normal 4131 
Benign Validation 

(20%) 
655 3082 

Malignant 1050 
Normal 1377 
Benign Test 

(20%) 
655 3082 

Malignant 1050 
Normal 1377 

 
Based on the image enhancement shown 

in Figure 3, showing a comparison of CT scan 
images before and after image enhancement. 
Part (a) shows a benign lesion in the lung with 
clear boundaries and no signs of aggressive 
growth, as well as a reduction in the size of the 
lesion. Section (b) shows a malignant tumor in 
the lung with irregular borders and signs of 
infiltration into the surrounding tissue. Section (c) 
shows normal lung tissue with no visible lesions 
or abnormalities before observation and remains 
normal with no pathological changes after the 
observation period. 
 

 
Figure 3. CT-Scan lung images before and after 

image enhancement 
 

Experiment Hyperparameter 
It is necessary to select the right 

hyperparameters in optimizing the performance 

of the machine learning model. Various methods 
have been developed to find the best 
hyperparameter combination, including Bayesian 
Optimization, Genetic Algorithms, and Particle 
Swarm Optimization. This section will describe 
each of these methods in detail, along with Table 
2, which lists the hyperparameters to look for and 
their value ranges for CNN, and presents the 
computational time results, the best-selected 
hyperparameters, and visualization architecture 
for each method. 

 
Table 2. Hyperparameters range of CNN 
Hyperparameter Value 

Learning rate [0.000001, 0.001] 
Num of Layers [2-5] 

Num of Neurons [32, 64, 128, 256] 
Dropout Rate [0.0-0.5] 

Optimizer (Adam, SGD) 
 
Bayesian optimization 

In this experiment, Bayesian Optimization 
with Expected Improvement (EI) acquisition 
function and ten iterations were performed in a 
total time of two hours and twenty-one minutes 
and thirty-seven seconds. This method found the 
optimal parameters with learning_rate 
0.0000158, num_layers 2, num_neurons 256, 
dropout_rate 0.1164, and optimizer Adam. As 
can be seen in Figure 4, The result of the model 
architecture includes three, namely, three 
convolution layers, three max-pooling layers, a 
dropout layer, and two fully connected layers with 
a softmax activation function in classifying it into 
three classes: benign, malignant, and normal. 
The convolution and max pooling process starts 
from a 256 × 256 pixel grayscale image, 
generating features with increasingly smaller 
sizes until it reaches 60 × 60 pixels in the last 
convolution layer, followed by dropout and fully 
connected layers for final classification. 
 

 
Figure 4. Visualization architecture BO-CNN 

 
Genetic algorithm 

In this experiment, the GA parameters 
were population_size 3, mutation_rate 0.1, and 
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five iterations were completed in three hours and 
fifty-two seconds. The method identified the 
optimal parameters as learning_rate 0.0002752, 
num_layers 5, num_neurons 128, dropout_rate 
0.3614, and optimizer Adam. Figure 5 is the 
result of the model architecture consisting of six 
convolution layers, six max-pooling layers, five 
dropout layers, and five connected layers with 
softmax activation function to classify three 
classes: benign, malignant, and normal. The 
convolution and max pooling process reduces a 
256 × 256 pixel grayscale image to 4 × 4 pixels, 
followed by dropout and fully connected layers for 
final classification. 
 

 
Figure 5. Visualization architecture GA-CNN 

 
Particle swarm optimization 

In this experiment, the PSO parameters 
were set to c1 0.5, c2 0.3, w 0.9, and five 
iterations were performed over two hours, fifteen 
minutes, and twenty-seven seconds. The method 
found the optimal parameters: learning_rate 
0.0007628, num_layers 3, num_neurons 128, 
dropout_rate 0.3576, and optimizer Adam. 
Figure 6 shows that the model architecture 
includes four convolution layers, four max-
pooling layers, three dropout layers, and fully 
connected three layers with a softmax activation 
function for classifying three classes: benign, 
malignant, and normal. The convolution and max 
pooling process reduces a 256 × 256 pixel 
grayscale image to 14 × 14 pixels, followed by 
dropout and fully connected layers for final 
classification. 

 

 
Figure 6. Visualization architecture PSO-CNN 

 
 
 

Performance Analysis 
The results in Table 3 show that our method 
outperforms other classification methods in terms 
of precision, recall, F1-Score, accuracy, and 
ROC. It achieved 97% precision, 97% recall, 97% 
F1-Score, 97.2% accuracy, and 99% ROC on the 
LIDC-IDRI dataset. Furthermore, the best 
method in the accuracy section is the SCCNN 
method with an accuracy of 95.45%, recall of 
96.66%, and ROC of 97.26%. The SCCNN 
method only uses recall, ROC, and accuracy for 
evaluation.  

However, based on the results 
presented, the proposed method outperforms 
SCCNN in terms of recall, and accuracy. Among 
other methods, the ResNet50-Ensemble Voting 
Method has a fairly high accuracy value but the 
accuracy value is still lower than our method. The 
Attention-based 3D-CNN method performs quite 
well, with an accuracy of 81.6%, but this is still 
lower than the method developed here. Overall, 
our method performs well for lung nodule 
classification compared to existing methods. The  
method proposed here can provide a 
comprehensive and effective solution for the task 
under consideration. In general, having high 
values in precision, recall, and ROC can be used 
as a tool for a reliable and trustworthy 
benchmark.  

In addition, popular CNN architectures in 
comparison such as VGG16, AlexNet, and 
ResNet-152 have more parameter structures 
with trainable values of about sixty million 
parameters. Then, the model that we have 
optimized with Bayesian optimization has fewer 
parameter values when compared to previous 
architectures of 59,713,603. The fact that our 
method still works despite using fewer 
parameters demonstrates its superiority in 
reducing memory requirements during training 
and computational costs incurred to reduce the 
overall computation time. Having fewer 
parameters makes the model size more compact, 
which can be easily implemented on devices that 
have a limited amount of resources. In 
comparison, our method contains only 10 layers 
compared to the standard architecture size that 
includes 13 layers, yet still offers better 
computational efficiency. 

In Figure 7, there is confusion matrix that 
illustrate the prediction results. The model 
successfully predicted 2,989 data. To be precise, 
612 benign class (class 0) images were correctly 
predicted with 43 errors, 1002 malignant class 
(class 1) images were correctly predicted with 48 
errors, and 1375 normal class (class 2) images 
were correctly predicted with only 2 errors.
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Table 3. Comparison of classification results with previous state-of-the-art models 

No Author Method Object Accuracy 
% 

Precision 
% 

Recall 
% 

F1-
Score 

% 

ROC 
% 

1 Shao et al. [25] Deep 
Diffractive 

Neural 
Network 
(D2NN) 

Lung 
Nodule 

76.77 – – – – 

2 Liu et al. [26] Attention-
based 3D-

CNN 

Lung 
Nodule 

81.6 – – – – 

3 Li et al. [27] ResNet50-
Ensemble 

Voting 

Lung 
Nodule 

94.3 – – – – 

4 Dong et al. [28] Semantic 
Characteristics 
Convolutional 

Neural 
Network 
(SCCNN) 

Lung 
Nodule 

95.45 – 96.66 – 97.26 

5 Proposed 
Method 

BO-CNN Lung 
Nodule 

97.2 97.00 97.00 97.00 99.67 

 
Figure 7. Confusion matrix BO-CNN 

 
Then, Figure 8 shows that the model 

successfully predicted 2,972 data points. To be 
precise, 606 images of the benign class (class 0) 
were predicted correctly with 49 errors, 998 
images of the malignant class (class 1) were 
predicted correctly with 52 errors, and 1,368 
images of the normal class (class 2) were 
predicted correctly with 9 errors. The results of 
this model achieved the highest accuracy across 
all classes, demonstrating its effectiveness in 
distinguishing between benign, malignant, and 
normal lung nodules.  

Furthermore, in Figure 9, the model 
successfully predicted 2,954 data. To be precise, 
603 benign class (class 0) images are correctly 
predicted and there are 52 errors, 988 malignant 
class (class 1) images are correctly predicted and 
there are 62 errors, and 1363 normal class (class 
2) images are correctly predicted and there are 
14 errors. 

 
Figure 8. Confusion matrix GA-CNN 

 

 
Figure 9. Confusion matrix PSO-CNN 

 
In addition, we evaluated the performance 

of three different CNN models, namely: BO-CNN, 
GA-CNN, and PSO-CNN. The model used can 
classify lung nodules into three classes namely 
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benign, malignant and normal. The evaluation 
methods used include precision, recall, F1-
Score, and number of samples (support) for each 
class. Based on the test results that have been 
carried out on the BO-CNN model performance 
test dataset contained in Table 4, the precision 
value reaches 92%, 96%, and 100% for benign, 
malignant, and normal classes. The recall values 
for the same classes were 93%, 96%, and 99%, 
resulting in F1-Score of 93%, 96%, and 99%.  

 
The support for each class was 656, 1049, and 
1377. Then, for the GA-CNN model in the benign 
nodule class category, the precision value 
obtained was 91%, the recall value was 93%, and 
the F1-Score value was 92%. Then, the 
malignant class has a precision of 96%, a recall 
value of 95%, and an F1-Score of 96%. 
Furthermore, the normal class achieved an 
almost perfect metric, with a precision value of 
99%, a recall value of 99%, and an F1-Score 
value of 99%. The number of samples for benign, 
malignant, and normal classes had consistent 
values at 655 for the benign category, 1050 for 
the malignant category, and 1377 for the normal 
category. Furthermore, the PSO-CNN model has 
a precision value of 89%, a recall value of 92%, 
and an F1-Score value of 91% for the benign 
class. Furthermore, in the malignant class, the 
model recorded a precision value of 96%, a recall 
value of 94%, and an F1-Score value of 95%. 
Then, in the normal class, the precision and recall 
values obtained were 99%, and the resulting F1-
Score was 99%. This model has a total number 
of samples in the benign class of 655, malignant 
class of 1050, and normal class of 1377.  

The three models described in detail in the 
previous paragraphs were found to perform very 

well in classifying normal lung nodules. Then, the 
GA-CNN model had the highest accuracy value 
for malignant nodules, and the BO-CNN model 
showed a balanced performance across all 
classes. Furthermore, the PSO-CNN model in 
detecting benign nodules was slightly less 
precise but it still gave a fairly strong performance 
in terms of malignant and normal nodules. 
Therefore, these findings further emphasize the 
potential of CNN-based approaches in 
classifying lung nodules accurately. Thus, this 
finding is very important in early treatment 
planning to avoid lung nodules from getting 
bigger.  

 
CONCLUSION 

From this study, it can be concluded that 
the use of CNN models with the application of 
Bayesian Optimization as the best parameter 
selection is a very effective approach in 
classifying lung nodules with benign, malignant, 
or normal classes. Furthermore, the model 
evaluation results show an accuracy value of 
97.2% with a total search time for the best 
parameters of 8497 seconds. When compared to 
CNN models that apply other hyperparameter 
methods such as Particle Swarm Optimization 
(PSO), it produces an accuracy value of 96.4% 
with a total time of 8127 seconds, and the 
Genetic Algorithm (GA) gets an accuracy value 
of 96.4% with a total time of 10852 seconds. 
Thus, the Bayesian Optimization (BO) approach 
shows better performance in terms of accuracy 
when compared to the PSO and GA 
hyperparameters, which can help radiologists 
predict and make decisions to diagnose lung 
cancer.

 
 

Table 4. Model performance metrics evaluation results 
Method Classes Precision Recall F1-Score Support 

BO-CNN Benign 92% 93% 93% 656 
 Malignant 96% 96% 96% 1049 
 Normal 100% 99% 99% 1377 
 Average 97% 97% 97% – 

GA-CNN Benign 91% 93% 92% 655 
 Malignant 96% 95% 96% 1050 
 Normal 99% 99% 99% 1377 
 Average 96% 96% 96% – 

PSO-CNN  Benign 89% 92% 91% 655 
 Malignant 96% 94% 95% 1050 
 Normal 99% 99% 99% 1377 
 Average 96% 96% 96% – 
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