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Abstract 
This paper addresses the challenge of accurately classifying sleepiness levels based on the Karolinska 
Sleepiness Scale (KSS) using Eye Aspect Ratio (EAR) data, especially when class imbalance leads to 
biased predictions. The research proposes a deep learning framework that integrates a Multi-Layer 
Perceptron (MLP) with the Synthetic Minority Over-sampling Technique (SMOTE) to balance the training 
data. EAR features, representing eye closure patterns, are extracted from video frames, and SMOTE is 
applied to generate synthetic data for underrepresented sleepiness classes. By training the MLP model on 
this balanced dataset, the system achieves a 97.6% classification accuracy in distinguishing four distinct 
sleepiness levels based on the KSS, demonstrating its effectiveness in reducing prediction bias and 
managing class imbalance, both crucial for real-time drowsiness detection systems. 
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INTRODUCTION 

Driving requires full psychological and 
cognitive alertness to ensure driver performance. 
Lapses in these areas can have fatal outcomes, 
such as accidents. According to the American 
Automobile Association (AAA) Foundation for 
Traffic Safety's 2019 Traffic Safety Culture Index, 
common driving issues include distraction, 
aggressive driving behavior, drowsiness, and 
psychological and physical impairments. Among 
respondents, 96% indicated that drowsy driving is 
extremely dangerous; however, 24% admitted to 
driving while so tired it was difficult to keep their 
eyes open at least once [1]. Drowsiness is a state 
between wakefulness and sleep, detectable 
through brain activity (reflecting information 
processing capacity) and eye activity (indicating 
visual perception). 

 A drowsiness detection system aims to 
prevent accidents caused by driver fatigue. One 
intrusive method for detecting sleepiness involves 
extracting Heart Rate Variability (HRV) data, 
which reflects autonomic nervous system activity. 
Vicente et al. studied 17 men and 13 women in a 
driving simulation, calculating HRV using an 
Electroencephalogram (EEG) for brain activity 
and an Electrocardiogram (ECG) for heart 

activity. The results indicated that as drowsiness 
increases, heart rate decreases [2]. 

Non-intrusive methods in drowsiness 
detection utilize visual data processed by 
machine learning and deep learning models to 
identify drowsy facial expressions [3] and extreme 
head positions [4]. These approaches generally 
rely on either the full frontal facial image for 
expression classification or specific facial features 
for more detailed analysis [5]. Local features like 
the eyes and mouth often indicate drowsiness [6]. 
Observable signs, such as prolonged eye closure 
(PERCLOS) [7-8], frequent blinking [9], and 
yawning [10], are monitored through cameras, 
allowing continuous facial observation without 
interrupting the user's activity. Convolutional 
Neural Networks (CNN) analyze this data in real-
time, effectively detecting signs of drowsiness 
and providing early warnings to drivers. 

 Fauzia et al. developed a visual-based 
drowsiness detection system that tracks eye 
blinks. If prolonged eye closure is detected, the 
system monitors eye movement and triggers an 
alarm through a vibrator. Built with OpenCV and 
a Raspberry Pi camera, experiments 
demonstrate that this system effectively detects 
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drowsiness and can help reduce vehicle 
accidents [11]. 

 Using the Eye Aspect Ratio (EAR) feature, 
Maior et al. (2020) developed a non-intrusive 
sleep detection method using a simple web 
camera. The model, tested for various eye 
behaviors via machine learning and computer 
vision, achieved an average test accuracy of 
94.9%. Validated with the DROZY dataset, the 
model’s accuracy was further supported using the 
Karolinska Sleepiness Scale (KSS) and response 
time as indicators of driver performance [12]. The 
Karolinska Sleepiness Scale, developed by 
researchers at the Karolinska Institute in Sweden, 
is a subjective tool widely used to evaluate 
individual levels of sleepiness or alertness, 
especially in studies on fatigue, alertness, and 
sleep deprivation [13]. 

 Developing a non-intrusive sleepiness 
classification model presents several challenges. 
Existing classifications, limited to two [11], [14] or 
three [15] categories, restrict the model’s ability to 
accurately represent nuanced sleepiness levels. 
Limited frame data hindered the model’s 
representation of continuous eye-opening and -
closing patterns. As a result, the model 
underrepresented complex sleep-induced eye 
movements. Furthermore, the interpolation 
method used to address missing data was 
suboptimal due to limited data, and unbalanced 
class data introduced bias, leading to inaccurate 
sleepiness classifications. This study aims to 
create a framework for classifying sleepiness into 
four classes based on EAR, aligning with the 
Karolinska Sleepiness Scale. Addressing data 
imbalance within each class, this framework 
seeks to provide balanced training data, reducing 
potential bias during training. 

RELATED WORKS 
A. Karolinska Sleepiness Scale (KSS) 

The Karolinska Sleepiness Scale (KSS) is a 
subjective sleepiness assessment tool, allowing 

subjects to select statements that best describe 
their current state. KSS scores range from 1 (very 
alert) to 9 (very sleepy), as shown in Table 1 [12]. 
KSS is widely applied to assess sleepiness in shift 
workers, drivers, jetlag sufferers, and patients 
with specific medical conditions. Research shows 
a high correlation between KSS scores, EEG 
variables, and human behavior, indicating high 
validity for the KSS as a measure of sleepiness 
[13].  
 

Table 1. KSS Description 

Rate Verbal description 
1 Extremely alert 
2 Very alert 
3 Alert 
4 Fairly alert 
5 Neither alert nor sleepy 
6 Some signs of sleepiness 
7 Sleepy but no effort to stay awake 
8 Sleepy, some effort to stay awake 
9 Very sleepy, great effort to stay awake, fighting 

sleep 
 
B. Face Landmarks 

Face landmarks are sets of points 
representing key facial features, as illustrated in 
Figure 1. They are essential in facial image 
processing applications, including head position 
estimation, emotion classification, face 
alignment, and facial recognition. Various 
algorithms detect the location of critical facial 
feature points, such as the eye corners [16]. In 
this research, face landmarks are used to detect 
the face and eyes in each frame, enabling 
calculation of the EAR value. One notable 
method for implementing face landmarks, 
presented by Kazemi et al. (2014) [17], employs 
HOG (Histogram of Oriented Gradients) for face 
detection and a Linear SVM classifier, producing 
68 coordinate points representing the face, 
accessible via the Dlib module [18]Error! 
Reference source not found.. 

 
C. Eye Aspect Ratio (EAR) 

The Eye Aspect Ratio (EAR) is a measure 
based on the ratio of eye length to width, serving 
as an indicator of eye openness [19]. Six 
reference points around the eye are used to 
calculate EAR from the vertical and horizontal 
distances between these points. In Error! 
Reference source not found., points 𝑝! − 𝑝" 

Figure 2. Six landmark points. Adapted from [20] 

Figure 1. The 68 facial landmarks configuration [18] 
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represent the eyes. The horizontal line between 
𝑝! and 𝑝" denotes eye length, while the vertical 
line, derived from the midpoint between 𝑝# − 𝑝$ 
and 𝑝% −	𝑝", represents eye width or the vertical 
Euclidean distance. The segment between 
𝑝!and	𝑝" represents the horizontal Euclidean 
distance for eye opening. Eq. 1 represents the 
formula for calculating the Eye Aspect Ratio 
(EAR): 
 

𝐸𝐴𝑅 =
‖𝑝# − 𝑝"‖ + ‖𝑝$ − 𝑝%‖

2‖𝑝! − 𝑝&‖
	 (1) 

 
The EAR value tends to be higher and more 
stable when the eyes are open, whereas it 
approaches zero when the eyes are closed. This 
value can be utilized in computer vision to 
determine eye status (open or closed) [12]. 
 
METHODOLOGY 

 This study proposes a framework to 
develop a four-class sleepiness classification 
model, based on EAR values and aligned with 
the KSS standard.  Using deep learning and data 
augmentation techniques, SMOTE is applied to 
balance data across classes during training. The 
primary contribution is a non-intrusive sleepiness 
classification model capable of identifying four 
levels of sleepiness based on the KSS. By 
leveraging EAR as the main indicator, this study 
integrates a Multi-Layer Perceptron (MLP) with 
SMOTE to address data imbalance, thereby 
enhancing model accuracy and generalizability. 
Figure 3 illustrates the research methodology. 

 
A. DROZY Dataset’s NIR Videos  

The DROZY dataset is used as the ground 
truth for model training and testing. Developed by 
the Laboratory for Signal and Image Exploitation 
(INTELSIG) at the University of Liège (ULg) in 
Belgium, this dataset includes Near Infrared 
(NIR) video recordings of 14 
European/Caucasian subjects who each 
completed a psychomotor vigilance test (PVT) 
three times while driving. Subjects were 
instructed to stay awake for one day, five hours, 
and thirty minutes prior to testing, as shown in 

Figure 4. Before beginning each PVT session, 
subjects recorded their KSS score to represent 
their sleepiness level [21].  

KSS scores, initially ranging from one to 
nine, were grouped into four classes based on 
the similarity of conditions represented by the 
Karolinska Sleepiness Scale. This approach is 
adapted from Ghoddoosian et al. [22], who 
grouped nine KSS scores into three classes, 
excluding scales 4 and 5. 

 

Figure 3. Research Methodology 

Figure 4. Pictorial summary of data collection schedule [21] 
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1) Class 1: KSS 2 and 3 (alert) – The subject is 
alert with no signs of sleepiness. 

2) Class 2: KSS 4 and 5 (low vigilance) – The 
subject is in a state between alertness and 
sleepiness. 

3) Class 3: KSS 6 and 7 (sleepy) – The subject 
is drowsy but can attempt to stay awake. 

4) Class 4: KSS 8 and 9 (very drowsy) – The 
subject is extremely sleepy, struggling to stay 
awake. 

 
B. Eye Feature Extraction 

Using a pretrained face detector and 
landmark detection based on HOG and Linear 
SVM in the Dlib module [17], facial features were 
extracted to obtain face landmarks. At this stage, 
eye feature extraction was performed to identify 
six points on the eye landmarks. Figure 5 
displays the region of interest (ROI) from face 
detection on a single frame, while Figure 7 shows 
the 68 facial landmark points detected in each 
frame.  

To calculate the EAR value, detection 
focused on eye features (reference points 36–41 
and 42–47). Figure 8 illustrates the open eye 
state with six landmark points. For each eye, six 
(𝑥, 𝑦) coordinates were identified, allowing for the 

calculation of the EAR value per eye based on 
Eq. 1. The average EAR value was determined 

by averaging the EARs of both eyes. When the 
eyes were open, the EAR value was 0.3 or 
higher, while it was less than 0.3 and approached 
zero when the eyes were closed. Error! 
Reference source not found. presents an EAR 
graph illustrating eye states for open and closed 
conditions, showing a stable EAR value when the 
eyes are open and a sharp decrease when they 
are closed. 

C. EAR Series Data Reconstruction 
Variations in framerate result in a different 

number of frames for each video of the same 
duration. Additionally, video recording limitations 
cause some frames to be lost [21]. Data loss also 
occurs when poor face detection leads to 
Spontaneous subject movements that obscure 
the face can prevent facial feature detection, 
resulting in further frame data loss. This data loss 
can introduce bias between recorded results and 
subjective sleepiness scale scores.  

To address this issue, linear interpolation is 
used to estimate the eye landmark coordinates 
for the missing frames. The goal is to reconstruct 
landmark data across approximately 18,000 
frames per video (assuming 30 fps for a 10-
minute video) to avoid data asynchrony. Since 
the data is in a two-dimensional space (𝑥, 𝑦) and 
most missing data occurs between sequential 
frame indices, linear interpolation is applied. The 
interpolation follows Eq. 2: 

𝑦 = 𝑦! + -
𝑦# − 𝑦#
𝑥# − 𝑥!

/ (𝑥 − 𝑥!)	 (2) 

 
Here, (𝑥, 𝑦) represents the interpolated value 
between points (𝑥!, 𝑦!) and (𝑥#, 𝑦#). In this study, 
𝑥 represents the frame index, and 𝑦 represents 
the eye landmark coordinate.  
 
D. EAR Data Class Balancing 

The initial data exhibits an unbalanced class 
distribution, which can negatively impact 
classification performance. To address this, 
oversampling is conducted using the SMOTE 
technique, which generates synthetic data in the 
specified proportions [23]. SMOTE is selected for 
its ability to create synthetic data that closely 

Figure 5. Face detection in one frame 

Figure 7. Face landmark detection results 
on one frame 

Figure 8. Open eye state landmark points 

Figure 6. Eye state illustrated by EAR values 
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resembles the original without duplication [23], 
[24]. This approach is implemented using the 
imblearn module, with several key parameters 
influencing the generated synthetic data: 
1) Sampling strategy: Defines the oversampling 

approach, which can specify the percentage 
of oversampling, target specific classes 
(minority, majority, or all), or set a desired 
data count per class. 

2) Controls the algorithm’s randomization, 
where different random state values (e.g., 
𝑥	versus 𝑦) result in varied synthetic data 
generation.  

3) K-	 neighbors: Specifies the number of 
samples used to determine nearest 
neighbors for data synthesis. 

 
Table 2. Proposed SMOTE Hyperparameter 

Configuration 

Hyperparameter Values 
k_neighbors 3 
random_state 70 

sampling_strategy 

Scenario A 
Class 1: 30, Class 2: 30, 
Class 3: 30, Class 4: 30 
Scenario B 

Class 1: 36, Class 2: 30, 
Class 3: 38, Class 4: 32 

An unbalanced data distribution across 
classes can lead to prediction bias and reduce 
model performance. In this study, SMOTE was 
applied with the proposed hyperparameter 
configurations, as shown in Table 2.  

The k-nearest neighbors parameter is set to 
3, following the rule that this value should not 

exceed the number of classes. The random state 
is set at 70. To evaluate model performance 
under different training scenarios, two sampling 
strategies with SMOTE are applied: 
1) Scenario A  

Each class is resampled to 30 data points, 
generating (30 - the original number of data 
points) synthetic data, totaling 84 synthetic 
data points.  

2) Scenario B 
Each class generates up to 25 synthetic data 
points, resulting in a total of 100 synthetic 
data points. 
Figure 9 illustrate improved and balanced 

distribution of EAR feature data, enhancing the 
visibility of features across each class. 

 
E. Training and Validation 

a. Original Data Distribution 

c. SMOTE Data Augmentation Scenario B b. SMOTE Data Augmentation Scenario A 

Figure 9. Comparison of Data Distribution between Original Data and Post-SMOTE Oversampling in 
Scenarios A and B 
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The dataset is divided into three subsets: 
training, validation, and testing sets, each 

serving distinct functions. 
1) Training set: Used by the model to learn 

patterns for making predictions. 
2) Validation set: Used to evaluate model 

performance and adjust hyperparameters if 
necessary.  

3) Testing set: Used to assess the model’s 
actual performance. 
	
 The data division follows specific 

guidelines, with synthetic data from oversampling 
used for training, while validation and testing sets 
consist of original (non-synthetic) data and 
external data. Synthetic data in the training set 
enables the model to learn various feature 
combinations. The data splits for each scenario 
are as follows: 
1) Scenario A 

According to Error! Reference source not 
found., following the sampling strategy in 
section 1, there are 84 training data points, 
24 validation data points, and 12 testing data 
points, with varied training data counts per 
class. 

2) Scenario B 
According to , based on the sampling 
strategy in section 2, there are 100 training 
data points, 24 validation data points, and 12 
testing data points, with equal training data 
across classes.  
 
Training is conducted using the Multi-Layer 

Perceptron (MLP) algorithm with the 
hyperparameter configuration shown in Table 5. 
An MLP is a type of artificial neural network 
(ANN) that consists of multiple layers of fully 
connected neurons. Although an MLP is a simple 
feedforward neural network, it is often considered 
part of deep learning if it includes more than one 
hidden layer, adding depth to its architecture [25]. 
MLP was chosen due to its suitability for 
processing non-linear data. Additionally, 
previous studies on drowsiness detection using 
EEG signal patterns have employed MLP [26], 
supporting its application in this study, which 
classifies sleepiness based on EAR patterns. 

 
Table 3. Scenario A Class Distribution 

Class 
Total 

Training 
Data 

Validation 
Data 

Testing 
Data 

Class 1 19 8 3 
Class 2 25 3 2 
Class 3 17 8 5 
Class 4 23 5 2 
Total 84 24 12 

 

Table 4. Scenario B Class Distribution 

Class 
Total 

Training 
Data 

Validation 
Data 

Testing 
Data 

Class 1 25 8 3 
Class 2 25 3 2 
Class 3 25 8 5 
Class 4 25 5 2 
Total 100 24 12 

 

Table 5. Proposed MLP Hyperparameter 
Configuration 

Hyperparameter Configuration 
hidden_layer_sizes (400,400,200,100) 
activation Relu 
Output activation Softmax 
Solver Adam 
Alpha 0.0001 
Beta 1 0.9 
Beta 2 0.999 
epsilon 1e-08 
Learning_rate init 0.001 
Learning_rate Invscaling 
Random state 762 

 
The model comprises six layers based on 

the hyperparameters in Table 5: one input layer, 
four hidden layers with 400, 400, 200, and 100 
neurons, and one output layer. The initial learning 
rate is set to 0.001 and decreases exponentially 
(inverse scaling). Each hidden layer uses the 
ReLU activation function, which outputs positive 
integer values, while the output layer employs the 
Softmax activation function to produce probability 

Figure 10. MLP model architecture 



ISSN 2089-8673 (Print) | ISSN 2548-4265 (Online) 
Volume 13, Issue 3, December 2024 

 
Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI | 456 

 

distributions and classify based on the highest 
probability.  

The model utilizes ‘adam’ (adaptive moment 
estimation) as the optimizer, with alpha, beta, 
and epsilon configurations in accordance with the 
creator’s recommendations [27]. Figure 10 
illustrates the architecture used for model 
training. 

 
EXPERIMENTS 

In this stage, the trained model is tested 
using a testing dataset. Testing is conducted over 
multiple epochs to assess the model's adequacy 
or determine if reconfiguration is required for 
improved results. Model performance is 
evaluated using the following metrics: 
1) Confusion matrix: A matrix representing the 

model’s predictive performance, showing the 
number of correct and incorrect predictions 
for each class. 

2) Accuracy: The ratio of correct predictions to 
the total number of data points, indicating 
overall model accuracy. 

3) Precision: The number of correct predictions 
for a class divided by the total predictions 
made for that class. 

4) Recall: The number of correct predictions for 
a class divided by the total actual data points 
in that class. 

5) 𝑓! score: A harmonic mean of precision and 
recall, calculated as follows (Eq. 3): 
 

𝑓!𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙

(3) 

 
6) Loss: A measurement of prediction error, 

using logistic/cross-entropy loss defined as 
follows (Eq. 4): 
 

𝐿$%&(ℓ, 𝑝) = −(ℓ𝑙𝑜𝑔(℘) + (1 − ℓ) log(1 − ℘)) (4) 
 
where ℓ is the label and ℘ is the estimated 
probability for the class. 

 
A. Model performance analysis 

Table 6 and Table 7 summarize the test 
results across epoch values of 60, 70, 80, 90, and 
100. Scenario A uses a sampling strategy that 
generates a varying number of synthetic data 
points per class, leading to different quantities of 
data trained for each class. In contrast, Scenario 
B applies a balanced sampling strategy, resulting 
in an equal amount of synthetic data for each 
class and, consequently, the same quantity of 
training data per class. Based on model 
performance testing against the epoch value, an 
increase in epoch value lengthens training time. 
As the epochs increase, the loss value decreases 
while accuracy improves. A lower loss value 

indicates higher prediction probability, whereas a 
higher loss value corresponds to a lower 
prediction probability.  

 
Table 6. Model Performance in Scenario A 

Performance Metrics Epoch 
60 70 80 90 100 

Training 
Time 45 48 49 53 67 

Accuracy 0.78 0.97 0.976 0.98 1 
Loss 0.75 0.55 0.35 0.21 0.13 

Validation 

Accuracy 0.71 0.88 0.91 0.88 0.96 
Precision 0.84 0.9 0.93 0.91 0.96 

Recall 0.71 0.88 0.91 0.88 0.96 
Loss 0.89 0.79 0.52 0.39 0.27 

 
Table 7. Model Performance in Scenario B 

Performance Metrics Epoch 
60 70 80 90 100 

Training 
Time 38 42 49 49 54 

Accuracy 0.96 0.98 0.976 0.99 1 
Loss 0.65 0.44 0.32 0.17 0.09 

Validation 

Accuracy 0.88 0.92 0.92 0.96 0.92 
Precision 0.91 0.93 0.93 0.96 0.93 

Recall 0.88 0.92 0.92 0.96 0.92 
Loss 0.76 0.6 0.46 0.36 0.19 

 
The MLP model, configured with four 

hidden layers containing 400, 200, and 100 
neurons respectively, an ‘adam’ optimizer, ‘relu’ 
activation in hidden layers, and ‘softmax’ in the 
output layer, along with other hyperparameters 
shown in Table 5, yields the best performance in 
Scenario B, where training data per class is 
balanced. At an epoch value of 80, this model 
achieves a training accuracy of 0.976 and a loss 
of 0.32, with validation accuracy, precision, 
recall, and F1 scores of 0.92, 0.93, 0.92, and 
0.92, respectively, and a validation loss of 0.46. 
When tested on a set of 12 data points, as shown 
in Figure 11 the model accurately classifies each 
class, resulting in an accuracy of 1 and a loss of 
0.46. In comparison, Scenario A, also at epoch 
80, shows two misclassifications, where two data 

Figure 11. Model B Confusion Matrix  
Performance on Test Set 
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points from Class 3 are classified as Class 1, 
achieving an accuracy of 0.83 and a loss of 0.64, 
as shown in Figure 12. 
 
B. Model performance on external data 

This model was also tested using external 
data from videos provided by volunteers. Prior to 
recording, subjects evaluated their sleepiness 
level based on the KSS standard. The model 
used for testing was from epoch 80, which 
demonstrated the best performance in both 
scenarios A and B. 

As shown in Table 8 and Table 9, the model 
classifies subject A, labeled as Class 3, as Class 
4 with a prediction probability of 32.05% and a 
loss of 1.13 in Table 8, and as class 3 with a 
prediction probability of 72.65% and loss of 0.31 

in Table 9. Similarly, predictions, probabilities, 
and losses for Subjects B, C, and D are 
presented in both tables. 

 
Table 8. Model A Performance on External Data 
Video Label Loss Prediction probability (%) 

1 2 3 4 
Subject A 3 1,13 25.91 10.17 31.87 32.05 
Subject B 3 1.43 48.64 13.11 23.78 14.47 
Subject C 3 1.13 30.16 5.7 26.26 37.88 
Subject D 3 1.26 36.92 26.03 28.32 8.73 

 
Table 9. Model B Performance on External Data 

Video Label Loss Prediction probability (%) 
1 2 3 4 

Subject A 3 0.31 6.83 7.52 72.65 13 
Subject B 3 0.82 25.18 21.92 43.18 9.09 
Subject C 3 0.52 10.3 9.62 59.31 20.78 
Subject D 3 0.6 14.13 23.74 54.65 7.48 

 
Comparing models generated in scenarios 

A and B, the model from scenario B exhibits 
lower loss and higher accuracy. This 
improvement is attributed to scenario B’s 
approach of balancing synthetic data across 
each class, highlighting that class balance can 
enhance model performance. 

This study also compares the proposed 
model with research by Han et al. [28], which 
examined models such as TCN, ResNet3D, and 
a combined TCN + ResNet3D model on datasets 
like UTA-RLDD, DROZY, and a custom facial 
image augmentation dataset. The proposed 
model aims to recognize fatigue through subtle 
changes around the operator's eyelids, using a 
combination of Temporal Convolutional Network 
(TCN) and ResNet3D. It utilizes the EAR 
sequence and a continuous frame eyelid image 
sequence to categorize the operator’s mental 
state into three classes: sober, low-vigilance, and 
drowsiness. 

 
Table 10. Comparison of the Performance of Different 

Trained Models 

Feature Model Accuracy (%) 

Eyelid Image 
sequence [28] 

C3D 65.42 
Densnet3D 87.36 
Inception3D 96.38 
Resnet3D 96.53 

EAR Sequence 
[28] 

1DCNN 46.25 
LSTM128 42.92 
LSTM256 43.33 
TCN 51.11 

Both eyelid 
Image and EAR 
sequence [28] 

Resnet3D + 
1DCNN 

97.36 

Resnet3D + 
TCN  

97.64 

EAR Sequence 
MLP  25 
MLP + SMOTE 
(*) 

97.6 

(*) Proposed Method 
 
Table 10 shows that when the same MLP 

model was tested with the original dataset, 
without SMOTE oversampling, it achieved only 
25% accuracy and could not classify into 4 
classes. This limitation is due to insufficient data 
in Class 2 to be split into training, validation, and 
testing sets. The results indicate that the 
proposed framework reaches the same accuracy 
(97.6%) as the ResNet3D + TCN model. A 
notable advantage of the proposed model is that 
it uses fewer features, relying solely on the EAR 
sequence, while also accommodating a larger set 
of classes (4 total) compared to Han’s 3 classes. 
In comparison with other methods that 
exclusively use the EAR sequence feature, the 
proposed model demonstrates significantly 
higher accuracy.  

This approach uses the Eye Aspect Ratio 
(EAR) to detect subtle eye movements 
associated with drowsiness and employs a Multi-
Layer Perceptron (MLP) to classify sleepiness 
levels. EAR serves as an effective feature for 
real-time eye closure detection, while the MLP's 
layered architecture captures complex data 
patterns. To address class imbalance, SMOTE 
generates synthetic data for underrepresented 

Figure 12. Model A Confusion Matrix  
Performance on Test Set 
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classes, enabling balanced training and reducing 
prediction bias. This method enhances model 
generalization, allowing it to classify all 
sleepiness levels with 97.6% accuracy, proving 
robust and effective for real-time drowsiness 
detection in practical applications. 
 
CONCLUSION 

Based on the experiments, the following 
conclusions can be drawn: 
The Multi-Layer Perceptron (MLP) architecture 
with four hidden layers can classify the 
Karolinska Sleepiness Scale using the eye 
aspect ratio (EAR) value, achieving a training 
accuracy of 97.6% and a loss of 32%. 

With the configured hyperparameters in 
Table 5, the model performs optimally at an 
epoch value of 80. This balanced model setup, 
with an equal number of training data per class, 
yields a training accuracy of 0.976 and a loss of 
0.32, a validation accuracy of 0.96 with a loss of 
0.46, and a testing accuracy of 1 with a loss of 
0.46. 

The implementation of SMOTE to generate 
synthetic data effectively addressed class 
imbalance, significantly enhancing classification 
accuracy. In Scenario B, where an equal amount 
of training data was applied across each class, 
losses were lower at 0.32, compared to Scenario 
A, where unequal class data led to higher losses 
of 0.46. 
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