Effectiveness of Giving Chitosan on Interleukin-6 and Mallondhyaldehide Levels in Wistar Rats with Chronic Periodontitis

Authors

  • I Gusti Agung Ayu Dharmawati Health Polytechnic of Denpasar, Denpasar, Indonesia
  • Nyoman Mastra Health Polytechnic of Denpasar, Denpasar, Indonesia
  • Ni Nyoman Dewi Supariani Health Polytechnic of Denpasar, Denpasar, Indonesia
  • Gusti Ayu Made Ratih Health Polytechnic of Denpasar, Denpasar, Indonesia
  • Ni Putu Rahayu Artini International Bali University, Denpasar, Indonesia

DOI:

https://doi.org/10.23887/ijnse.v7i1.53897

Keywords:

Chitosan, Interleukin levels, Mallondhyaldehyde levels

Abstract

The 6th highest diseases that occur in Indonesian society include dental caries and periodontitis caused by dental plaque which is a breeding ground for bacteria such as Streptococcus mutants and Phorphyromonas gingivalis. The purpose of this study was to determine the effectiveness of chitosan on levels of Interleukin-6 and Malondhyaldehyde (MDA), as an anti-inflammatory marker using the Elisa test. The research method was a true experimental randomized posttest only control group design, with 3 treatment groups namely control, 2% chitosan gel, and 100mg/200g/bb of chitosan orally in 15 Wistar rats with periodontitis induced by Phorphyromonas gingivalis bacteria. The results showed that the mean levels of Interleukin-6 and Mallondhyaldehyde were significantly different (p<0.05) between the control group, chitosan gel treatment, and oral chitosan administration Interleukin-6 levels were the highest in the chitosan gel (8.3091±1.25570), the control average (5.8523±0.51512), the lowest oral average (3.2563±1.45952). Similarly, Mallondhyaldehyde levels were highest in the gel group (2.8850±0.19353), control group (2.2284±0.00914), and oral group (1.2943±0.60280).). Based on these results, oral chitosan was the most effective in the treatment of periodontitis.

References

Abdel-Moneim, A., E.-, Shahawy, A., Yousef, A. I., Abd El-Twab, S. M., Elden, Z. E., & Taha, M. (2020). Novel polydatin-loaded chitosan nanoparticles for safe and efficient type 2 diabetes therapy: In silico, in vitro and in vivo approaches. International Journal of Biological Macromolecules, 154, 1496–1504. https://doi.org/10.1016/j.ijbiomac.2019.11.031. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.031

Azuma, K., Osaki, T., Minami, S., & Okamoto, Y. (2015). Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. Journal of Functional Biomaterials, 6(1), 33–49. https://doi.org/10.3390/jfb6010033. DOI: https://doi.org/10.3390/jfb6010033

Campoccia, D., Montanaro, L., & Arciola, C. R. (2013). A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 34(34), 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089. DOI: https://doi.org/10.1016/j.biomaterials.2013.07.089

Carvalho, C. V., Saraiva, L., Bauer, F. P. F., Kimura, R. Y., Souto, M. L. S., Bernardo, C. C., & Pustiglioni, F. E. (2018). Orthodontic treatment in patients with aggressive periodontitis. American Journal of Orthodontics and Dentofacial Orthopedics, 153(4), 550–557. https://doi.org/10.1016/j.ajodo.2017.08.018. DOI: https://doi.org/10.1016/j.ajodo.2017.08.018

Chang, S. H., Lin, Y. Y., Wu, G. J., Huang, C. H., & Tsai, G. J. (2019). Effect of chitosan molecular weight on anti-inflammatory activity in the RAW 264.7 macrophage model. International Journal of Biological Macromolecules, 131, 167–175. https://doi.org/10.1016/j.ijbiomac.2019.02.066. DOI: https://doi.org/10.1016/j.ijbiomac.2019.02.066

Chaparro, A., Sanz, A., Quintero, A., Inostroza, C., Ramirez, V., Carrion, F., & Illanes, S. E. (2013). Increased inflammatory biomarkers in early pregnancy is associated with the development of pre‐eclampsia in patients with periodontitis: a case control study. Journal of Periodontal Research, 48(3), 302–307. https://doi.org/10.1111/jre.12008. DOI: https://doi.org/10.1111/jre.12008

Chen, P., Yang, Z., Mai, Z., Huang, Z., Bian, Y., Wu, S., & Zhou, W. (2022). Electrospun nanofibrous membrane with antibacterial and antiviral properties decorated with Myoporum bontioides extract and silver-doped carbon nitride nanoparticles for medical masks application. Separation and Purification Technology, 298, 121565. https://doi.org/10.1016/j.seppur.2022.121565. DOI: https://doi.org/10.1016/j.seppur.2022.121565

Fu, Y. T., Chen, K. Y., Chen, Y. S., & Yao, C. H. (2014). Earthworm (Pheretima aspergillum) extract stimulates osteoblast activity and inhibits osteoclast differentiation. BMC Complementary and Alternative Medicine, 14(1), 1–9. https://doi.org/10.1186/1472-6882-14-440. DOI: https://doi.org/10.1186/1472-6882-14-440

Fu, Y. T., Sheu, S. Y., Chen, Y. S., Chen, K. Y., & Yao, C. H. (2015). Porous gelatin/tricalcium phosphate/genipin composites containing lumbrokinase for bone repair. Bone, 78, 15–22. https://doi.org/10.1016/j.bone.2015.04.034. DOI: https://doi.org/10.1016/j.bone.2015.04.034

Grover, H. S., Kapoor, S., & Singh, A. (2016). Effect of topical simvastatin (1.2 mg) on gingival crevicular fluid interleukin-6, interleukin-8 and interleukin-10 levels in chronic periodontitis–A clinicobiochemical study. Journal of Oral Biology and Craniofacial Research, 6(2), 85–92. https://doi.org/10.1016/j.jobcr.2015.11.003. DOI: https://doi.org/10.1016/j.jobcr.2015.11.003

Hasibuan, S. Y., Amallia, C., Hutagalung, M. H., & Erawati, S. (2021). Perbandingan Efektivitas Ekstrak Sereh dengan Temulawak dalam Menghambat Pertumbuhan Streptococcus Mutans. Jurnal Ilmiah Kesehatan Sandi Husada, 10(1), 208–213. https://doi.org/10.35816/jiskh.v10i1.582. DOI: https://doi.org/10.35816/jiskh.v10i1.582

Ikono, R., Vibriani, A., Wibowo, I., Saputro, K. E., Muliawan, W., Bachtiar, B. M., & Tojo, A. (2019). Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual-species biofilms. BMC Research Notes, 12(1), 1–7. https://doi.org/10.1186/s13104-019-4422-x. DOI: https://doi.org/10.1186/s13104-019-4422-x

Jepsen, K., & Jepsen, S. (2016). Antibiotics/antimicrobials: systemic and local administration in the therapy of mild to moderately advanced periodontitis. Periodontology 2000, 71(1), 82–112. https://doi.org/10.1111/prd.12121. DOI: https://doi.org/10.1111/prd.12121

Jones Lipinski, R. A., Thillier, Y., Morisseau, C., Sebastiano Jr, C. S., Smith, B. C., Hall, C. D., & Katritzky, A. R. (2021). Molecular docking‐guided synthesis of NSAID–glucosamine bioconjugates and their evaluation as COX‐1/COX‐2 inhibitors with potentially reduced gastric toxicity. Chemical Biology & Drug Design, 98(1), 102–113. https://doi.org/10.1111/cbdd.13855. DOI: https://doi.org/10.1111/cbdd.13855

Krzyściak, W., Jurczak, A., Kościelniak, D., Bystrowska, B., & Skalniak, A. (2014). The virulence of Streptococcus mutans and the ability to form biofilms. European Journal of Clinical Microbiology & Infectious Diseases, 33, 499–515. https://doi.org/10.1007/s10096-013-1993-7. DOI: https://doi.org/10.1007/s10096-013-1993-7

Kurgan, Ş., Fentoğlu, Ö., Önder, C., Serdar, M., Eser, F., Tatakis, D. N., & Günhan, M. (2016). The effects of periodontal therapy on gingival crevicular fluid matrix metalloproteinase‐8, interleukin‐6 and prostaglandin E2 levels in patients with rheumatoid arthritis. Journal of Periodontal Research, 51(5), 586–595. https://doi.org/10.1111/jre.12337. DOI: https://doi.org/10.1111/jre.12337

Lee, D., Lee, S. J., Moon, J. H., Kim, J. H., Heo, D. N., Bang, J. B., & Kwon, I. K. (2018). Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. Journal of Industrial and Engineering Chemistry, 66, 196–202. https://doi.org/10.1016/j.jiec.2018.05.030. DOI: https://doi.org/10.1016/j.jiec.2018.05.030

Ma, S., Lu, X., Yu, X., Du, Y., Xu, S., Li, M., & Deng, J. (2022). An injectable multifunctional thermo-sensitive chitosan-based hydrogel for periodontitis therapy. Biomaterials Advances, 142, 213158. https://doi.org/10.1016/j.bioadv.2022.213158. DOI: https://doi.org/10.1016/j.bioadv.2022.213158

Makama, S., Piella, J., Undas, A., Dimmers, W. J., Peters, R., Puntes, V. F., & van den Brink, N. W. (2016). Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil. Environmental Pollution, 218, 870–878. https://doi.org/10.1016/j.envpol.2016.08.016. DOI: https://doi.org/10.1016/j.envpol.2016.08.016

Mdala, I., Olsen, I., Haffajee, A. D., Socransky, S. S., Thoresen, M., & de Blasio, B. F. (2014). Comparing clinical attachment level and pocket depth for predicting periodontal disease progression in healthy sites of patients with chronic periodontitis using multi‐state M arkov models. Journal of Clinical Periodontology, 41(9), 837–845. https://doi.org/10.1111/jcpe.12278. DOI: https://doi.org/10.1111/jcpe.12278

Mokgehle, T. M., Madala, N., Gitari, W. M., & Tavengwa, N. T. (2021). Advances in the development of biopolymeric adsorbents for the extraction of metabolites from nutraceuticals with emphasis on Solanaceae and subsequent pharmacological applications. Carbohydrate Polymers, 264, 118049. https://doi.org/10.1016/j.carbpol.2021.118049. DOI: https://doi.org/10.1016/j.carbpol.2021.118049

Mostafa, F., Abdel-Moneim, A., Abdul-Hamid, M., Galaly, S. R., & Mohamed, H. M. (2021). Polydatin and polydatin-loaded chitosan nanoparticles attenuate diabetic cardiomyopathy in rats. Journal of Molecular Histology, 52, 135–152. https://doi.org/10.1007/s10735-020-09930-4. DOI: https://doi.org/10.1007/s10735-020-09930-4

Ngo, D. H., Vo, T. S., Ngo, D. N., Kang, K. H., Je, J. Y., Pham, H. N. D., & Kim, S. K. (2015). Biological effects of chitosan and its derivatives. Food Hydrocolloids, 51, 200–216. https://doi.org/10.1016/j.foodhyd.2015.05.023. DOI: https://doi.org/10.1016/j.foodhyd.2015.05.023

Notohartojo, I. T., & Suratri, M. A. (2016). Periodontitis dan Penyakit Stroke di Indonesia (Riskesdas 2013). Jurnal Biotek Medisiana Indonesia, 5(1), 1–8. https://doi.org/10.22435/jbmi.v5i1.1700.

Omodanisi, E. I., Aboua, Y. G., & Oguntibeju, O. O. (2017). Assessment of the anti-hyperglycaemic, anti-inflammatory and antioxidant activities of the methanol extract of Moringa oleifera in diabetes-induced nephrotoxic male wistar rats. Molecules, 22(4), 439. https://doi.org/10.3390/molecules22040439. DOI: https://doi.org/10.3390/molecules22040439

Puspitasari, M., Sabrina, A. P., Herawati, E., Angelica, E. O., Tania, E., & Yuniarsih, N. (2023). Review Artikel: Berbagai Polimer Yang Berperan Dalam Sistem Penghantaran Obat Tertarget Kolon. Jurnal Pendidikan Dan Konseling (JPDK), 5(1), 41–49. https://doi.org/10.31004/jpdk.v5i1.10832.

Putri, D. K., & Darmawan, E. (2022). Analgesic Activity of Chitosan in Arthritis Rats Induced by Complete Freund’s Adjuvant (CFA). PHARMACY: Jurnal Farmasi Indonesia (Pharmaceutical Journal of Indonesia), 19(1), 132–141. https://doi.org/10.30595/pharmacy.v19i1.13842. DOI: https://doi.org/10.30595/pharmacy.v19i1.13842

Qu, Y., Shen, Y., Teng, L., Huang, Y., Yang, Y., Jian, X., & Fu, Q. (2022). Chicoric acid attenuates tumor necrosis factor-α-induced inflammation and apoptosis via the Nrf2/HO-1, PI3K/AKT and NF-κB signaling pathways in C28/I2 cells and ameliorates the progression of osteoarthritis in a rat model. International Immunopharmacology, 111, 109129. https://doi.org/10.1016/j.intimp.2022.109129. DOI: https://doi.org/10.1016/j.intimp.2022.109129

Rasul, R. M., Muniandy, M. T., Zakaria, Z., Shah, K., Chee, C. F., Dabbagh, A., & Wong, T. W. (2020). A review on chitosan and its development as pulmonary particulate anti-infective and anti-cancer drug carriers. Carbohydrate Polymers, 250, 116800. https://doi.org/10.1016/j.carbpol.2020.116800. DOI: https://doi.org/10.1016/j.carbpol.2020.116800

Shao, J., Li, Y., Wang, Z., Xiao, M., Yin, P., Lu, Y., & Liu, J. (2013). 7b, a novel naphthalimide derivative, exhibited anti-inflammatory effects via targeted-inhibiting TAK1 following down-regulation of ERK1/2-and p38 MAPK-mediated activation of NF-κB in LPS-stimulated RAW264. 7 macrophages. International Immunopharmacology, 17(2), 216–228. https://doi.org/10.1016/j.intimp.2013.06.008. DOI: https://doi.org/10.1016/j.intimp.2013.06.008

Sultana, F., & Rasool, M. (2015). A novel therapeutic approach targeting rheumatoid arthritis by combined administration of morin, a dietary flavanol and non-steroidal anti-inflammatory drug indomethacin with reference to pro-inflammatory cytokines, inflammatory enzymes, RANKL and transcr. Chemico-Biological Interactions, 230, 58–70. https://doi.org/10.1016/j.cbi.2015.02.007. DOI: https://doi.org/10.1016/j.cbi.2015.02.007

Trisnawaty, T., Salim, E. M., & Yakub, K. (2017). Perbedaan kadar TNF-α saliva pada ibu hamil preeklamsia dan ibu hamil tidak preeklamsia Differences of the salivary TNF-α level in pregnant women with and without preeclampsia. Jurnal Kedokteran Gigi Universitas Padjadjaran, 29(3). https://doi.org/10.24198/jkg.v29i3.15959. DOI: https://doi.org/10.24198/jkg.v29i3.15959

Vemanaradhya, G. G., Emani, S., Mehta, D. S., & Bhandari, S. (2017). Effect of 1.2% of simvastatin gel as a local drug delivery system on Gingival Crevicular Fluid interleukin-6 & interleukin-8 levels in non surgical treatment of chronic periodontitis patients. Archives of Oral Biology, 82, 55–61. https://doi.org/10.1016/j.archoralbio.2017.05.022. DOI: https://doi.org/10.1016/j.archoralbio.2017.05.022

Zang, S., Mu, R., Chen, F., Wei, X., Zhu, L., Han, B., & Jin, L. (2019). Injectable chitosan/β-glycerophosphate hydrogels with sustained release of BMP-7 and ornidazole in periodontal wound healing of class III furcation defects. Materials Science and Engineering: C, 99, 919–928. https://doi.org/10.1016/j.msec.2019.02.024. DOI: https://doi.org/10.1016/j.msec.2019.02.024

Downloads

Published

2023-03-20

How to Cite

Dharmawati, I. G. A. A. ., Mastra, N. ., Supariani, N. N. D. ., Ratih, G. A. M., & Artini, N. P. R. . (2023). Effectiveness of Giving Chitosan on Interleukin-6 and Mallondhyaldehide Levels in Wistar Rats with Chronic Periodontitis. International Journal of Natural Science and Engineering, 7(1), 49–58. https://doi.org/10.23887/ijnse.v7i1.53897

Issue

Section

Articles