Penerapan Algoritma Kruskal Pada Jaringan Kabel di Tanjung Selor

dady sulaiman

Abstract


Graph theory is a branch of mathematics that has actually existed for more than two hundred years. In everyday life, there are problems regarding optimization that can be solved using a minimum spanning tree, otherwise known as the Minimum Spanning Tree. Kruskal's algorithm is a method used to find and form a minimum spanning tree. The purpose of this research is to obtain the minimum value of a cable network at PT. Telkom Tanjung Selor. The results of the optimal calculation using Kruskal's Algorithm assisted with Maple produce minimum spanning trees with a weight of m compared to the initial value of m. Thus, PT. Telkom Tanjung Selor can save cables as long as m from the total length of the cable installed.


Keywords


Graf; Minimum Spanning Tree; Kruskal's Algorithm; Maple

Full Text:

PDF

References


Biswas P, Goel M, Negi H, Datta M. An efficient greedy minimum spanning tree algorithm based on vertex associative cycle detection method. Procedia Comput Sci. 2016 Jan 1;92:513–9.

Festa P, Guerriero F, Laganà D, Musmanno R. Solving the shortest path tour problem. Eur J Oper Res. 2013 Nov 1;230(3):464–74.

Gong M, Li G, Wang Z, Ma L, Tian D. An efficient shortest path approach for social networks based on community structure. CAAI Trans Intell Technol. 2016 Jan 1;1(1):114–23.

Latifah U, Sugiharti E. Penerapan algoritma prim dan kruskal pada jaringan distribusi air pdam tirta moedal cabang semarang utara. Unnes J Math [Internet]. 2015 May 1 [cited 2019 Aug 20];4(1). Available from: https://journal.unnes.ac.id/sju/index.php/ujm/article/view/7418

Likaj R, Shala A, Mehmetaj M, Hyseni P, Bajrami X. (2013). Application of graph theory to find optimal paths for the transportation problem. IFAC Proc Vol. 2013 Jan 1;46(8):235–40.

Sam M, Yuliani Y. Penerapan algoritma prim untuk membangun pohon merentang minimum (Minimum spanning tree) dalam pengoptimalan jaringan transmisi nasional provinsi sulawesi selatan. J Math Nat Sci. 2017 Sep 12;7(1):50–61.

Sanderson DJ, Peacock DCP, Nixon CW, Rotevatn A. Graph theory and the analysis of fracture networks. J Struct Geol. 2019 Aug 1;125:155–65.

Sarkar D, Konwar P, De A, Goswami S. A graph theory application for fast and efficient search of optimal radialized distribution network topology. J King Saud Univ - Eng Sci [Internet]. 2019 Feb 15 [cited 2019 Aug 20]; Available from: http://www.sciencedirect.com/science/article/pii/S1018363918302022

Selçuk B, Karci A. (2017). Connected cubic network graph. Eng Sci Technol Int J. Jun 1;20(3):934–43.

Sunita, Garg D. Dynamizing Dijkstra: A solution to dynamic shortest path problem through retroactive priority queue. J King Saud Univ - Comput Inf Sci [Internet]. 2018 Mar 6 [cited 2019 Aug 20]; Available from: http://www.sciencedirect.com/science/article/pii/S1319157817303828

Yasin M, Afandi B. Simulasi minimum spanning tree graf berbobot menggunakan algoritma prim dan algoritma kruskal. J Educ J Pendidik Pembelajaran Dan Bimbing Dan Konseling [Internet]. 2014 Nov 1 [cited 2019 Aug 20];2(2). Available from: http://ejurnal.uij.ac.id/index.php/EDU/article/view/133




DOI: http://dx.doi.org/10.23887/wms.v15i2.28512

Article Metrics

Abstract view : 119 times
PDF file view : 105 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal ini diindeks oleh:








Flag Counter
 

 

View My Stat