Aplikasi Kalman Filter untuk Memprediksi Jumlah Penderita Tuberkulosis di Indonesia
DOI:
https://doi.org/10.23887/wms.v16i1.39593Keywords:
Kalman Filter, Tuberculosis, TBC, MAPE.Abstract
Tuberculosis or often called tuberculosis is an infectious disease of the respiratory tract caused by the Mycrobacterium tuberculosis. To see the spread of tuberculosis in the next 5 years, calculations are needed to predict the number of tuberculosis sufferers in the next year. In solving this problem, one of the right methods to predict the number of tuberculosis sufferers in Indonesia is Kalman Filter. Kalman Filter is an algorithm used to estimate state variables in linear systems. The process carried out in measurement with Kalman Filter is the initialization of variables, the prediction stage (Time Update), and the correction stage (measurement update). To see the error rate of the prediction result, the Mean Absolute Percentage Error (MAPE) calculation is used.
References
Aslam, Muhammad. (2020). Using the kalman filter with Arima for the COVID-19 pandemic dataset of Pakistan. Data in Brief;105854. https://doi.org/10.1016/j.dib.2020.105854.
Expat. Tuberculosis. Tuberculosis in Indonesia - Health and Medical Concerns (expat.or.id) diakses tanggal 22 Mei 2021.
Hadianto, A. M. (2015). Perbandingan Metode Extended Kalman Filter dan Unscented Kalman Filter pada Estimasi Model Predator-Prey Lotka-Volterra. Jember: Universitas Jember.
Herdiani, E. T., Nuravia, Amran, & Thamrin, S. A. (2010). Aplikasi Kalman Filter Pada Data Survival. Jurnal Matematika, Statistika dan Komputasi ,2, 72-85.
Kementerian Kesehatan RI. (2017). Pusdatin KemenKes RI 2017. https://pusdatin.kemkes.go.id/ diakses tanggal 23 Agustus 2019.
Kementerian Kesehatan Republik Indonesia. 2018. Indonesia, National TB Program. https://www.who.int/tb/features_archive/indonesia_11apr18.pdf diakses tanggal 22 Mei 2021.
Kalmanfilter.net. 2021. Kalman Filter in One Dimension. https://www.kalmanfilter.net diakses 20 September 2021.
Lewis, J. M., Laksmivarahan, S. dan Dhall, S. (2006), Dynamic Data Assimilation, A Least Square Approach, Cambridge University Press, New York.
Manalu, & Putra, H. S. (2010). Faktor - Faktor Yang Mempengaruhi Kejadian Tuberkulosis Paru & Upaya Penanggulangannya. Ekologi Kesehatan , Ix (4), 1340-1346.
Ngatini, E. Apriliani, and H. Nurhadi. (2017). “Ensemble and Fuzzy Kalman Filter for position estimation of an autonomous underwater vehicle based on dynamical system of AUV motion,” Expert Syst. Appl., vol. 68, pp. 29–35, Feb. 2017, doi: 10.1016/j.eswa.2016.10.003.
Ngatini dan H. Nurhadi. 2019. Estimasi Lintasan AUV 3 Dimensi (3D) dengan ensemble Kalman Filter. Jurnal Inovtek Polbeng-Seri Informatika Vol. 4 No.1 Hal. 12-21.
Setyaningtyas, Ratna. (2019). Faktor-faktor yang Berhubungan dengan Kejadian Tuberculosis Paru pada Anak di RSUD Panembahan Senopati Bantul Tahun 2019. Skripsi Prodi Sarjana Terapan Alih Jenjang Jurusan Kebidanan Politeknik Kesehatan Kementerian Kesehatan Yogyakarta.
Song, J., Xie, H., Gao, B., Zhong, Y., Gu, C., Choi, K. (2021). Maximum likelihood-based extended Kalman filter for COVID-19 prediction. Chaos, Solitons and Fractals ;146;110922. https://doi.org/10.1016/j.chaos.2021.110922.
USAID. Indonesia Tuberculosis Roadmap Overview, Fiscal Year 2021. 2020. https://www.usaid.gov/global-health/health-areas/tuberculosis/resources/news-and-updates/global-accelerator-end-tb/tb-roadmaps/indonesia diakses tanggal 22 Mei 2021.
Zach. (2020). How to Calculate Mean Absolute Percentage Error (MAPE) in Excel. https://www.statology.org diakses tanggal 21 September 2021.
Downloads
Published
Issue
Section
License
Wahana Matematika and Sains is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License