Analisa Kegagalan pada Patahnya Sambungan Las dalam Sistem Instrumentasi Katup Pengaman Tekanan Kerja
DOI:
https://doi.org/10.23887/jstundiksha.v12i3.51347Keywords:
Analisa kerusakan, sambungan las, retak fatiq, vibrasiAbstract
Analisa kerusakan dilakukan dengan menerapkan serangkaian inspeksi dan pengujian terhadap sambungan las dari tube yang digunakan dalam instalasi peralatan industri minyak dan gas bumi. Kerusakan berupa patahan ditemukan pada tube yang merupakan bagian dari sistem instrumentasi katup pengaman tekanan kerja. Observasi dengan mikroskop pada perbesaran rendah memperlihatkan retakan berawal dari sisi dinding luar tube dengan morfologi patahan merupakan pola penjalaran retak fatigue. Pengujian komposisi kimia menunjukan bahwa material tube merupakan baja tahan karat tipe 316L. Analisa menggunakan scanning electron microscope pada permukaan patahan membuktikan bahwa mekanisme patahan merupakan patah getas yang merambat pada batas butir. Berdasarkan hasil observasi, retak yang terjadi pada sambungan tube terjadi akibat beban dinamis yang timbul pada saat operasional. Penyebab utama timbulnya beban dinamis adalah fenomena getaran yang timbul dari mekanisme membuka dan menutupnya katup pengaman tekanan kerja. Fenomena getaran yang terjadi pada material tube menimbulkan retak fatiq pada daerah sambungan las yang terus merambat kemudian menyisakan luas penampang yang tidak lagi mampu menahan pembebanan sehingga menyebabkan tube patah. Beberapa rekomendasi diberikan sebagai metode pencegahan agar tidak terjadi kejadian berulang terutama pada sambungan las dari tube yang memiliki diameter kecil.
References
Almeida, D. F., Martins, R. F., & Cardoso, J. B. (2017). Numerical simulation of residual stresses induced by TIG butt-welding of thin plates made of AISI 316L stainless steel. Procedia Structural Integrity, 5, 633–639. https://doi.org/10.1016/j.prostr.2017.07.032.
Alyousif, O. M., & Nishimura, R. (2010). A hydrogen embrittlement mechanism for sensitized types 304, 316 and 310 austenitic stainless steels in boiling saturated magnesium chloride solutions. Corrosion Science, 52(1), 7–13. https://doi.org/10.1016/j.corsci.2009.07.016.
American Society for Metals. (2005). ASM Hanbook-Fatigue and Fracture (Vol. 19). ASM International.
American Society for Metals. (2018). ASM Hanbook-Failure Analysis and Prevention. Failure Analysis and Prevention, 1061–1077. https://doi.org/10.31399/asm.hb.v11.a0005695.
American Society for Testing and Materials E92. (2004). Standard Test Method for Vickers Hardness of Metallic Materials. ASTM International, 82(Reapproved 2003), 1–9.
ASTM Standard. (2015). E407-07 Standard Practice for Microetching Metals and Alloys. ASTM International, 07(Reapproved 2015), 1–22.
Babu, M. N., Dutt, B. S., Venugopal, S., Sasikala, G., Bhaduri, A. K., Jayakumar, T., & Raj, B. (2010). On the anomalous temperature dependency of fatigue crack growth of SS 316(N) weld. Materials Science and Engineering A, 527(20), 5122–5129. https://doi.org/10.1016/j.msea.2010.04.075.
Ceramics, A., Precision, W. S., Hardness, A. B., Hardness, V., Hardness, S., Hardness, K., & Hardness, S. (2012). Standard Test Method for Knoop and Vickers Hardness of Materials 1. C, 1–43. https://doi.org/10.1520/E0384-11.2.
Deshmukh, S., & Dhamangaonkar, P. (2023). Materials Today : Proceedings Coupled CFD-FEA simulation of bulging tube failure in hot temperature zone. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2022.09.014.
Fu, J. W., Yang, Y. S., Guo, J. J., & Tong, W. H. (2008). Effect of cooling rate on solidification microstructures in AISI 304 stainless steel. Materials Science and Technology, 24(8), 941–944. https://doi.org/10.1179/174328408X295962.
Galbally, D., García, G., Hernando, J., Sánchez, J. D. D., & Barral, M. (2015). Analysis of pressure oscillations and safety relief valve vibrations in the main steam system of a Boiling Water Reactor. Nuclear Engineering and Design, 293, 258–271. https://doi.org/10.1016/j.nucengdes.2015.08.005.
He, L., Akebono, H., & Sugeta, A. (2018). Effect of high-amplitude loading on accumulated fatigue damage under variable-amplitude loading in 316 stainless steel. International Journal of Fatigue, 116(June), 388–395. https://doi.org/10.1016/j.ijfatigue.2018.06.045.
Hussaini, S. M., Singh, S. K., & Gupta, A. K. (2014). Formability and fracture studies of austenitic stainless steel 316 at different temperatures. Journal of King Saud University - Engineering Sciences, 26(2), 184–190. https://doi.org/10.1016/j.jksues.2013.05.001.
Johan Singh, P., Mukhopadhyay, C. K., Jayakumar, T., Mannan, S. L., & Raj, B. (2007). Understanding fatigue crack propagation in AISI 316 (N) weld using Elber’s crack closure concept: Experimental results from GCMOD and acoustic emission techniques. International Journal of Fatigue, 29(12), 2170–2179. https://doi.org/10.1016/j.ijfatigue.2006.12.013.
Kant, R., Mittal, R., Kumar, C., Rana, B. S., Kumar, M., & Kumar, R. (2018). Fabrication and characterization of weldments AISI 304 and AISI 316 Used in industrial applications. Materials Today: Proceedings, 5(9), 18475–18481. https://doi.org/10.1016/j.matpr.2018.06.189.
Li, G., Cai, Q., Lu, X., Zhu, X., & Xu, S. (2022). Failure analysis of cracking in the welded joints of hydrogen reformer outlet pigtail tubes. Engineering Failure Analysis, 137(March), 106257. https://doi.org/10.1016/j.engfailanal.2022.106257.
Li, J., Cao, T., Zhang, C., Cheng, C., & Zhao, J. (2022). Failure analysis of reheater tubes in a 350 MW supercritical circulating fluidized bed boiler. Engineering Failure Analysis, 137(February), 106285. https://doi.org/10.1016/j.engfailanal.2022.106285.
Li, Y., Chen, H., Pan, Z., Liang, H., Wang, Z., Feng, Z., Li, Z., & Kuang, Y. (2022). Failure analysis of superheater tubes in an air quenching cooler waste heat boiler. Engineering Failure Analysis, 131(November 2021), 105869. https://doi.org/10.1016/j.engfailanal.2021.105869.
Ling, J., Chen, Y., Wang, B., Chen, C., Song, F., Ye, Y., & Wang, Y. (2019). Failure analysis of 304H stainless steel convection tube serviced in an ethylene cracking furnace. Engineering Failure Analysis, 97(October 2017), 399–407. https://doi.org/10.1016/j.engfailanal.2019.01.019.
Liu, M., Ni, Z., Du, C., Liu, Z., Sun, M., Fan, E., Wang, Q., Yang, X., & Li, X. (2021). Failure investigation of a 304 stainless steel geothermal tube. Engineering Failure Analysis, 129(May), 105694. https://doi.org/10.1016/j.engfailanal.2021.105694.
Liu, Y., Qu, Y., Chang, F., & Li, S. (2021). Failure analysis of heat exchange tubes in hydrogenation unit. Engineering Failure Analysis, 129(September), 105718. https://doi.org/10.1016/j.engfailanal.2021.105718.
Moslemi, N., Redzuan, N., Ahmad, N., & Hor, T. N. (2015). Effect of current on characteristic for 316 stainless steel welded joint including microstructure and mechanical properties. Procedia CIRP, 26, 560–564. https://doi.org/10.1016/j.procir.2015.01.010.
Mourad, A. H. I., Alghafri, M. G., & Zeid, O. A. A. (2004). Stable crack extension through AISI 4340 steel: Experimental investigation. Key Engineering Materials, 261–263(I), 207–212. https://doi.org/10.4028/www.scientific.net/kem.261-263.207.
Nishimura, R., & Alyousif, O. M. (2009). A new aspect on intergranular hydrogen embrittlement mechanism of solution annealed types 304, 316 and 310 austenitic stainless steels. Corrosion Science, 51(9), 1894–1900. https://doi.org/10.1016/j.corsci.2009.01.031.
Ostovan, F., Shafiei, E., Toozandehjani, M., Mohamed, I. F., & Soltani, M. (2021). On the role of molybdenum on the microstructural, mechanical and corrosion properties of the GTAW AISI 316 stainless steel welds. Journal of Materials Research and Technology, 13, 2115–2125. https://doi.org/10.1016/j.jmrt.2021.05.095.
Ou, G., Gu, Y., Yu, C., & Jin, H. (2022). Failure analysis of ammonium chloride salt coagulation corrosion of U-tube heat exchanger in diesel hydrogenation unit. Engineering Failure Analysis, 137(March), 106264. https://doi.org/10.1016/j.engfailanal.2022.106264.
Payam, A. F., Payton, O., Picco, L., Moore, S., Martin, T., Warren, A. D., Mostafavi, M., & Knowles, D. (2019). Development of fatigue testing system for in-situ observation of stainless steel 316 by HS-AFM & SEM. International Journal of Fatigue, 127(February), 1–9. https://doi.org/10.1016/j.ijfatigue.2019.05.015.
Pettigrew, M. J., & Taylor, C. E. (2003). Vibration analysis of shell-and-tube heat exchangers: An overview - Part 1: Flow, damping, fluidelastic instability. Journal of Fluids and Structures, 18(5), 469–483. https://doi.org/10.1016/j.jfluidstructs.2003.08.007.
Prasad Reddy, G. V., Sandhya, R., Valsan, M., & Bhanu Sankara Rao, K. (2008). High temperature low cycle fatigue properties of 316(N) weld metal and 316L(N)/316(N) weld joints. International Journal of Fatigue, 30(3), 538–546. https://doi.org/10.1016/j.ijfatigue.2007.03.009.
Redutskiy, Y., Camitz-Leidland, C. M., Vysochyna, A., Anderson, K. T., & Balycheva, M. (2021). Safety systems for the oil and gas industrial facilities: Design, maintenance policy choice, and crew scheduling. Reliability Engineering and System Safety, 210(December 2020). https://doi.org/10.1016/j.ress.2021.107545.
Sajith, S., Shukla, S. S., Murthy, K. S. R. K., & Robi, P. S. (2020). Mixed mode fatigue crack growth studies in AISI 316 stainless steel. European Journal of Mechanics, A/Solids, 80(November), 103898. https://doi.org/10.1016/j.euromechsol.2019.103898.
Shankar, V., Mariappan, K., Sandhya, R., & Laha, K. (2016). Understanding low cycle fatigue and creep-fatigue interaction behavior of 316 L(N) stainless steel weld joint. International Journal of Fatigue, 82, 487–496. https://doi.org/10.1016/j.ijfatigue.2015.09.003.
Singh, R., Agrahari, S., Yadav, S. D., & Kumar, A. (2021). Microstructural evolution and mechanical properties of 316 austenitic stainless steel by CGP. Materials Science and Engineering A, 812(March), 141105. https://doi.org/10.1016/j.msea.2021.141105.
Song, X., Cui, L., Cao, M., Cao, W., Park, Y., & Dempster, W. M. (2014). A CFD analysis of the dynamics of a direct-operated safety relief valve mounted on a pressure vessel. Energy Conversion and Management, 81, 407–419. https://doi.org/10.1016/j.enconman.2014.02.021.
Song, X. G., Wang, L. T., Park, Y. C., & Sun, W. (2015). A Fluid-structure Interaction Analysis of the Spring-Loaded Pressure Safety Valve during Popping off. Procedia Engineering, 130, 87–94. https://doi.org/10.1016/j.proeng.2015.12.178.
Steel, A. A. (2008). Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing for A 262 Practices for Detecting Susceptibility to Intergranu- lar Attack in Austenitic Stainless Steels of Steel Products less Steel Tubes. 2–7.
Suresh Kumar, T., Nagesha, A., Mariappan, K., & Kumar Dash, M. (2021). Deformation and failure behaviour of 316 LN austenitic stainless steel weld joint under thermomechanical low cycle fatigue in as-welded and thermally aged conditions. International Journal of Fatigue, 149(March), 106269. https://doi.org/10.1016/j.ijfatigue.2021.106269.
Thomas, D., & Mourad, A. I. (2021). Failures and leak inspection techniques of tube-to-tubesheet joints : A review. Engineering Failure Analysis, 130(September), 105798. https://doi.org/10.1016/j.engfailanal.2021.105798.
Vander Voort, & Baldwin, W. (2004). Metallography and Microstructures Handbook. ASM International, 9, 2733. http://www.worldcat.org/oclc/42469467.
Wu, Z., Zhang, K., Zhou, C., Zhou, Z., Zhang, W., Bao, F., Zheng, J., & Zhang, L. (2021). Warm deformation enhances strength and inhibits hydrogen induced fatigue crack growth in metastable 304 and 316 austenitic stainless steels. Materials Science and Engineering A, 818(April), 141415. https://doi.org/10.1016/j.msea.2021.141415.
Zhai, J. hui, Sun, B. bei, & Zhou, Y. (2021). Failure analysis on 304 stainless steel tube of semi water gas preheater in coal chemical plant. Engineering Failure Analysis, 125(March), 105443. https://doi.org/10.1016/j.engfailanal.2021.105443.
Zhang, B., Haghshenas, A., Zhang, X., Zhao, J., Shao, S., Khonsari, M. M., Guo, S., & Meng, W. J. (2020). On the failure mechanisms of Cr-coated 316 stainless steel in bending fatigue tests. International Journal of Fatigue, 139(February), 105733. https://doi.org/10.1016/j.ijfatigue.2020.105733.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 gilang kusuma
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)