Fotodegradasi Metilen Biru Menggunakan Campuran Pasir Puya/TiO2

Authors

  • Ferdian Rizki Amanda Universitas Tanjungpura, Pontianak, Indonesia
  • Imelda Hotmarisi Silalahi Universitas Tanjungpura, Pontianak, Indonesia
  • Titin Anita Zaharah Universitas Tanjungpura, Pontianak, Indonesia
  • Nelly Wahyuni Universitas Tanjungpura, Pontianak, Indonesia

DOI:

https://doi.org/10.23887/jstundiksha.v13i2.81388

Keywords:

Pasir puya, TiO2 , Fotokatalis, Matriks Fotokatalis, Metilen Biru

Abstract

Pasir puya merupakan istilah yang dikenal untuk pasir yang bersumber dari sisa pertambangan emas yang dilakukan khususnya oleh masyarakat lokal Kalimantan, telah diketahui memiliki kandungan mineral yang berharga seperti ZrSiO4, FeTiO3, dan TiO2 yang belum dimanfaatkan. Target penelitian ini adalah memanfaatkan pasir puya sebagai matriks fotokatalis TiO2 yang dapat  memperbaiki efisiensi katalitik TiO2. Penelitian ini bertujuan untuk menganalisis karakteristik serta aktivitas campuran pasir puya/TiO2 terhadap degradasi metilen biru dalam larutan berair. Campuran pasir puya/TiO2 disintesis melalui metode sol-gel kemudian dikarakterisasi menggunakan X-Ray Diffraction (XRD), analisis sorpsi gas (BET) dan Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX). Konsentrasi metilen biru diukur menggunakan spektrofotometer UV-Vis. Hasil analisis XRD mengkonfirmasi bahwa fase kristal TiO2 dalam campuran pasir puya/TiO2 yang telah disintesis adalah fase anatase pada 2θ 25,32o, 37,78o, 48,04o, 54o, 55,09o, dan 62,78o bersama dengan kristal zirkonium silikat pada 2θ 26,97o, 52,19o, dan 55,57o yang berasal dari pasir puya. Hasil analisa EDX menunjukkan bahwa campuran pasir puya/TiO2 mengandung unsur dominan O, Ti, dan Zr. Analisis gas sorpsi BET menunjukkan peningkatan luas permukaan pada campuran pasir puya/TiO2 lebih dari 10 kali lipat dibandingkan pasir puya. Kemampuan fotokatalitik optimum dalam mengurangi kadar metilen biru dalam larutan berair berdasarkan analisis statistik adalah campuran pasir puya/TiO2 5%, yang tidak berbeda signifikan dari campuran TiO2 dengan pasir puya 3% dan 1% namun berbeda dengan campuran dengan pasir puya 10%.

Author Biography

Titin Anita Zaharah, Universitas Tanjungpura, Pontianak, Indonesia

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tanjungpura University, Pontianak, Indonesia

References

Abdullah. (2018). Effect of Incorporating TiO2 Photocatalyst in PVDF Hollow Fibre Membrane for Photo-Assisted Degradation of Methylene Blue. Bulletin of Chemical Reaction Engineering & Catalysis, 13(3), 588–591. https://ejournal2.undip.ac.id/index.php/bcrec/article/view/2909/1939. DOI: https://doi.org/10.9767/bcrec.13.3.2909.588-591

Alif, L. (2022). Photodegradation of Indigosol Blue Dye Using TiO2/Natural Zeolite Photocatalyst. Jurnal Kimia Valensi, 8(1), 54–59. https://journal.uinjkt.ac.id/index.php/valensi/article/view/24558/pdf. DOI: https://doi.org/10.15408/jkv.v8i1.24558

Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., Wang, L., Liu, H., Liu, Y., & Ruan, R. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 268, 121725. https://doi.org/10.1016/j.jclepro.2020.121725. DOI: https://doi.org/10.1016/j.jclepro.2020.121725

Chen, W., Tian, Y., Wang, X., Ma, R., Ding, H., Tu, Y., & Zhang, H. (2023). Preparation and characterization of Zr-containing silica residue purification loaded nano-TiO2 composite photocatalysts. Chemical Physics, 570, 111889. https://doi.org/10.1016/j.chemphys.2023.111889. DOI: https://doi.org/10.1016/j.chemphys.2023.111889

Hsu, C.-Y., Mahmoud, Z. H., Abdullaev, S., Ali, F. K., Ali Naeem, Y., Mzahim Mizher, R., Morad Karim, M., Abdulwahid, A. S., Ahmadi, Z., Habibzadeh, S., & Kianfar, E. (2024). Nano titanium oxide (nano-TiO2): A review of synthesis methods, properties, and applications. Case Studies in Chemical and Environmental Engineering, 9, 100626. https://doi.org/10.1016/j.cscee.2024.100626. DOI: https://doi.org/10.1016/j.cscee.2024.100626

Kartika, N., Silalahi, I. H., Zaharah, T. A., & Aritonang, A. B. (2024). Peningkatan Kadar Zirkonium Silikat dalam Pasir Puya, Residu Penambangan Emas dari Kecamatan Monterado Kabupaten Bengkayang Provinsi Kalimantan Barat. Positron, 14(1), 68–76. DOI: https://doi.org/10.26418/positron.v14i1.66460

Kumar Patnaik, R., & Divya, N. (2023). A brief review on the synthesis of TiO2 thin films and its application in dye degradation. Materials Today: Proceedings, 72, 2749–2756. https://doi.org/10.1016/j.matpr.2022.10.064. DOI: https://doi.org/10.1016/j.matpr.2022.10.064

Lestari, A. D., Risa, N., & Silalahi, I. H. (2021). Komposisi Unsur dan Karakteristik Mineral Pasir Puya dari Sintang, Kalimantan Barat. Indonesian Journal of Pure and Applied Chemistry, 4(1), 11–16. DOI: https://doi.org/10.26418/indonesian.v4i1.45758

Li, X., Wei, H., Song, T., Lu, H., & Wang, X. (2023). A review of the photocatalytic degradation of organic pollutants in water by modified TiO2. Water Science and Technology, 88(6), 1495–1507. https://doi.org/10.2166/wst.2023.288. DOI: https://doi.org/10.2166/wst.2023.288

Mao, T., Zha, J., Hu, Y., Chen, Q., Zhang, J., & Luo, X. (2024). Research Progress of TiO2 Modification and Photodegradation of Organic Pollutants. Inorganics, 12(7). https://doi.org/10.3390/inorganics12070178. DOI: https://doi.org/10.3390/inorganics12070178

Ngulube, K. F., Abdelhaleem, A., Osman, A. I., Peng, L., & Nasr, M. (2024). Advancing sustainable water treatment strategies: harnessing magnetite-based photocatalysts and techno-economic analysis for enhanced wastewater management in the context of SDGs. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-32680-9. DOI: https://doi.org/10.1007/s11356-024-32680-9

Nisah. (2022). Laundry waste treatment with photodegradation method using photocatalyst nanoparticle TiO2-SiO2. Journal of Aceh Physics Society, 11(2), 59–64. http://www.jurnal.unsyiah.ac.id/JAcPS/article/view/24924/15564. DOI: https://doi.org/10.24815/jacps.v11i2.24924

Poernomo, H., Sajima, & Pusporini, N. D. (2020). Synthesis of Zirconium Oxychloride and Zirconia Low TENORM by Zircon Sand from Landak West Kalimantan. Journal of Physics: Conference Series, 1436(1), 12106. https://doi.org/10.1088/1742-6596/1436/1/012106. DOI: https://doi.org/10.1088/1742-6596/1436/1/012106

Samin, Astuti, W., Poernomo, H., Daulay, A., Sajima, & Rozana, K. (2024). Synthesis of Environmentally Friendly Oxide Zirconium from Zircon Sand. Journal of Sustainable Metallurgy, 10(2), 903–913. https://doi.org/10.1007/s40831-024-00845-y. DOI: https://doi.org/10.1007/s40831-024-00845-y

Sari. (2020). Degradation of Methyl Violet Using TiO2-Bayah Natural Zeolite Photocatalyst. Jurnal Rekayasa Kimia & Lingkungan, 15(1), 10–20. https://jurnal.usk.ac.id/RKL/article/view/11953/12353. DOI: https://doi.org/10.23955/rkl.v15i1.11953

Sboui, M., Nsib, M. F., Rayes, A., Swaminathan, M., & Houas, A. (2017). TiO2–PANI/Cork composite: A new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation. Journal of Environmental Sciences, 60, 3–13. https://doi.org/10.1016/j.jes.2016.11.024. DOI: https://doi.org/10.1016/j.jes.2016.11.024

Sriyana. (2023). Color Degradation of Napthol Jeans with TiO2-SiO2 Photocatalyst from Karangwuni Beach Sand, Kulon Progo. Eksergi, 20(1). http://jurnal.upnyk.ac.id/index.php/eksergi/article/view/8990/pdf. DOI: https://doi.org/10.31315/e.v20i1.8990

Sun, H., Song, J., Sun, S., Qu, J., Lü, W., & Qi, T. (2019). Decomposition kinetics of zircon sand in NaOH sub-molten salt solution. Transactions of Nonferrous Metals Society of China, 29(9), 1948–1955. https://doi.org/10.1016/S1003-6326(19)65102-2. DOI: https://doi.org/10.1016/S1003-6326(19)65102-2

Van Thuan, D., Ngo, H. L., Thi, H. P., & Chu, T. T. H. (2023). Photodegradation of hazardous organic pollutants using titanium oxides -based photocatalytic: A review. Environmental Research, 229, 116000. https://doi.org/10.1016/j.envres.2023.116000. DOI: https://doi.org/10.1016/j.envres.2023.116000

Widyandari, E. (2018). Synthesis and Photoactivity of Fe3O4/TiO2-Co as a Magnetically Separable Visible Light Responsive Photocatalyst. Journal of Chemistry, 18(3), 403–410. https://journal.ugm.ac.id/ijc/article/view/26831/20504. DOI: https://doi.org/10.22146/ijc.26831

Zaharah, T. A., Silalahi, I. H., Lestari, A. D., & Sembiring, A. (2024). Penentuan Komposisi Unsur Pasir Puya Melalui Reaksi Fusi Alkali dengan Natrium Hidroksida. Alchemy: Journal of Chemistry, 12(1), 49–58. https://ejournal.uin-malang.ac.id/index.php/Kimia/article/view/23017/11173.

Zhou, B., Zhao, X., & Liu, Y. (2024). The latest research progress on the antibacterial properties of TiO2 nanocomposites. The Journal of The Textile Institute, 1–27. https://doi.org/10.1080/00405000.2024.2349324. DOI: https://doi.org/10.1080/00405000.2024.2349324

Downloads

Published

2024-07-25

How to Cite

Amanda, F. R., Silalahi, I. H., Zaharah, T. A., & Wahyuni, N. (2024). Fotodegradasi Metilen Biru Menggunakan Campuran Pasir Puya/TiO2. JST (Jurnal Sains Dan Teknologi), 13(2), 289–298. https://doi.org/10.23887/jstundiksha.v13i2.81388

Issue

Section

Articles