A Komparasi Model Gerak Brown Geometrik Termodifikasi dan Model Kecerdasan Buatan untuk Prediksi Harga Saham Sektor Kesehatan di Indonesia
DOI:
https://doi.org/10.23887/jstundiksha.v12i2.48960Keywords:
stock prices, geometric brownian motion, artificial intelligenceAbstract
Selama pandemi COVID-19 di Indonesia, pergerakan saham di berbagai sektor mengalami dampak yang signifikan. Akan tetapi, harga saham pada sektor kesehatan mengalami pertumbuhan sebesar 3,71%. Penelitian ini bertujuan menerapkan model Gerak Brown Geometrik yang Termodifikasi (MBM) dan model kecerdasan buatan untuk memprediksi pergerakan penutupan harga pada data harga penutupan saham PT. Kalbe Farma Tbk. Lalu, hasil prediksi dibandingkan untuk mengetahui model terbaik. Pada MBM, dilakukan konstruksi tren dan volatilitas yang memuat variabel waktu. Hasil ini kemudian dibandingkan dengan model kecerdasan buatan, yaitu Light Gradient Boosting Machine (LightGBM) dan Multi Layer Perceptron (MLP). Selain itu, pada konstruksi model kecerdasan buatan, dilakukan pendekatan baru yang mana input dari model tersebut adalah tanggal dan titik urutan deret waktu. Hasil simulasi menunjukkan bahwa MBM mampu memberikan nilai MAPE yang lebih kecil dibandingkan GBM. Akan tetapi, model kecerdasan buatan, khususnya LightGBM, masih lebih unggul bila digunakan untuk memodelkan harga saham sektor kesehatan. Model ini memberikan nilai MAPE dibawah 1%.
References
Ashraf, B. N. /. (2021). Stock markets’ reaction to COVID-19: Moderating role of national culture. Finance Research Letters, 41. https://doi.org/10.1016/j.frl.2020.101857.
Chen, Q., Zhang, W., & Lou, Y. (2020). Forecasting stock prices using a hybrid deep learning model integrating attention mechanism, multi-layer Perceptron, and bidirectional long-short term memory neural network. IEEE Access, 8. https://doi.org/10.1109/access.2020.3004284.
Chhajer, P., Shah, M., & Kshirsagar, A. (2022). The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decision Analytics Journal, 2. https://doi.org/10.1016/j.dajour.2021.100015.
D., Z., M., H., & Q., J. (2020). Financial Markets Under the Global Pandemic of COVID-19. Finace Research Letters, 36. https://doi.org/10.1016/j.frl.2020.101528.
Daul, S., Jaisson, T., & Nagy, A. (2022). Performance attribution of machine learning methods for stock returns prediction. The Journal of Finance and Data Science, 8, 86–104. https://doi.org/10.1016/j.jfds.2022.04.002.
Feng, R., Jiang, P., & Volkmer, H. (2021). Geometric brownian motion with affine drift and its time-integral. Applied Mathematics and Computation, 395. https://doi.org/10.1016/j.amc.2020.125874.
Huang, L., Leng, H., Li, X., Ren, K., Song, J., & Wang, D. (2021). A data-driven method for hybrid data assimilation with Multilayer Perceptron. Big Data Research, 23. https://doi.org/10.1016/j.bdr.2020.100179.
Hull, J. C. (2018). Options, Futures, and Other Derivatives. Pearson Education Limited.
Ichev, R. (2021). Stock price reaction to appointment of a chief health officer during COVID-19. Journal of Behavioral and Experimental Finance, 31. https://doi.org/10.1016/j.jbef.2021.100541.
Jabeur, B. S., Khalfaoui, R., & Arfi, B. W. (2021). The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: Evidence from explainable machine learning. Journal of Environmental Management, 298. https://doi.org/10.1016/j.jenvman.2021.113511.
Kamara, A. F., Chen, E., &, & Pan, Z. (2022). An ensemble of a boosted hybrid of deep learning models and technical analysis for forecasting stock prices. Information Sciences, 594, 1–19. https://doi.org/10.1016/j.ins.2022.02.015.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., … Liu, T. Y. (2017). LightGBM: a highly efficient gradient boosting decision tree [Conference session]. NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, USA.
Khang, P. Q., Kaczmarczyk, K., Tutak, P., Golec, P., Kuziak, K., Depczyński, R., … Rot, A. (2021). Machine learning for liquidity prediction on Vietnamese stock market. Procedia Computer Science, 192, 3590–3597. https://doi.org/10.1016/j.procs.2021.09.132.
Konstantinov, S., Diveev, A., Balandina, G., & Baryshnikov, A. (2019). Comparative research of random search algorithms and evolutionary algorithms for the optimal control problem of the mobile robot. Procedia Computer Science, 150, 462–470. https://doi.org/10.1016/j.procs.2019.02.080.
Na, H., & Kim, S. (2021). Predicting stock prices based on informed traders’ activities using deep neural networks. Economics Letters, 204. https://doi.org/10.1016/j.econlet.2021.109917.
Namdari, A., & Li, Z. S. (2018). Integrating fundamental and technical analysis of stock market through multi-layer Perceptron. 2018 IEEE Technology and Engineering Management Conference (TEMSCON). https://doi.org/10.1109/temscon.2018.8488440.
Oud, M. A., & Goard, J. (2015). Valuation of Options on Oil Futures under the 3/4 Oil Price Model. ,. International Journal of Theoretical and Applied Finance, 18(8). https://doi.org/10.1142/s0219024915500508.
Putri, E. R., Tjahjono, V. R., & Imron, C. (2021). A deposit insurance pricing with a multi-state regime-switching volatility. International Journal of Applied and Computational Mathematics, 7(6). https://doi.org/10.1007/s40819-021-01176-2.
Qu, Y., Zhang, Z., & Qin, Z. (2020). Wavelet-aided stock forecasting model based on Ensembled machine learning. 2020 The 3rd International Conference on Machine Learning and Machine Intelligence. https://doi.org/10.1145/3426826.3426834.
Rezaei, H., Faaljou, H., & Mansourfar, G. (2021). Stock price prediction using deep learning and frequency decomposition. Expert Systems with Applications, 169. https://doi.org/10.1016/j.eswa.2020.114332.
Rezeki, S., & Ishafit, I. (2017). Pengembangan Media Pembelajaran Interaktif untuk Sekolah Menengah Atas Kelas XI pada Pokok Bahasan Momentum. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 3(1), 29. https://doi.org/10.21009/1.03104.
Ruslan, S. M., & Mokhtar, K. (2021). Stock market volatility on shipping stock prices: GARCH models approach. The Journal of Economic Asymmetries, 24. https://doi.org/10.1016/j.jeca.2021.e00232.
Salisu, A. A., & Vo, X. V. (2020). Predicting stock returns in the presence of COVID-19 pandemic: The role of health news. International Review of Financial Analysis, 71. https://doi.org/10.1016/j.irfa.2020.101546.
Sun, X., Liu, M., & Sima, Z. (2020). A novel cryptocurrency price trend forecasting model based on LightGBM. Finance Research Letters, 32. https://doi.org/10.1016/j.frl.2018.12.032.
Syaifudin, W. H., & Putri, E. R. (2021). The Application of Model Predictive Control on Stock Portfolio Optimization with prediction based on geometric brownian Motion-Kalman filter. Journal of Industrial & Management Optimization. https://doi.org/10.3934/jimo.2021119.
Tao, M., Gao, S., Mao, D., & Huang, H. (2022). Knowledge graph and deep learning combined with a stock price prediction network focusing on related stocks and mutation points. Journal of King Saud University - Computer and Information Sciences, 34(7), 4322–4334. https://doi.org/10.1016/j.jksuci.2022.05.014.
Tiwari, S., Bharadwaj, A., & Gupta, S. (2017). Stock price prediction using data analytics. International Conference on Advances in Computing, Communication and Control (ICAC3). https://doi.org/10.1109/icac3.2017.8318783.
Tong, Z., & Liu, A. (2018). Analytical pricing of discrete arithmetic Asian options under generalized CIR process with time change. ,. International Journal of Financial Engineering, 5(1). https://doi.org/10.1142/s2424786318500020.
Yu, Z., Qin, L., Chen, Y., & Parmar, M. D. (2020). Stock price forecasting based on LLE-BP neural network model. ,. Physica A: Statistical Mechanics and Its Applications, 553. https://doi.org/10.1016/j.physa.2020.124197.
Zhang, X., Ding, Z., Hang, J., & He, Q. (2022). How do stock price indices absorb the COVID-19 pandemic shocks? The North American Journal of Economics and Finance, 60. https://doi.org/10.1016/j.najef.2022.101672.
Zhou, F., Zhang, Q., Sornette, D., & Jiang, L. (2019). Cascading logistic regression onto gradient boosted decision trees for forecasting and trading stock indices. Applied Soft Computing, 84. https://doi.org/10.1016/j.asoc.2019.105747.
Zolfaghari, M., & Gholami, S. (2021). A hybrid approach of adaptive wavelet transform, long short-term memory and ARIMA-GARCH family models for the stock index prediction. Expert Systems with Applications, 182. https://doi.org/10.1016/j.eswa.2021.115149.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Martha Joanadiva Majesty Wororomi, Wilan Sutisna
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)