Pemilihan Fitur Chi Square Pada Algoritma Naïve Bayes dan Pengaruhnya Terhadap Analisis Sentimen Masyarakat Indonesia Tentang Pembelajaran Tatap Muka Pada Masa Pandemi Covid-19
DOI:
https://doi.org/10.23887/jstundiksha.v12i1.51899Keywords:
Sentiment Analysis, Chi Square, Covid-19, Naïve Bayes, Feature SelectionAbstract
Kritik dan komentar yang disampaikan masyarakat Indonesia terkait kebijakan pemerintah mengenai pembelajaran tatap muka di masa pandemi Covid-19 menuai pro dan kontra. Tidak sedikit orang tua yang khawatir dengan kebijakan ini dikarenakan para orang tua masih takut akan penyebaran klaster baru Covid-19 di Indonesia yang semakin berkembang, di sisi lain banyak juga orang yang beropini hal ini baik diterapkan mengingat pembelajaran secara daring dinilai kurang efektif karena banyak siswa yang sulit menerima materi yang disampaikan guru secara daring serta banyaknya siswa yang belum memiliki perangkat yang memadai. Banyaknya opini yang dituliskan di Twitter membutuhkan pengklasifikasian sesuai sentimen yang dimiliki agar mudah untuk mendapatkan kecenderungan opini tersebut apakah cenderung beropini netral, positif maupun negatif. Analisis sentimen dalam penelitian ini dilakukan dengan menggunakan metode Naïve Bayes dan seleksi ciri Chi Square dalam melakukan klasifikasi. Hasil analisis yang dari metode Naïve Bayes dengan seleksi ciri chi Square memiliki akurasi 93% dan tanpa seleksi ciri Chi Square memiliki akurasi 92%, sehingga dapat disimpulkan Metode Naïve Bayes dengan seleksi ciri Chi Square memiliki tingkat akurasi yang lebih baik dibanding tanpa menggunakan seleksi ciri Chi Square.
References
Agustin, M. (2021). Tipikal Kendala Guru PAUD dalam Mengajar pada Masa Pandemi Covid 19 dan Implikasinya. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 5(1), 334–345. https://doi.org/10.31004/obsesi.v5i1.598.
Amrullah, A. Z., Anas, A. S., & Hidayat, M. A. J. (2020). Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square. Jurnal Bumigora Information Technology (BITe), 2(1), 40–44. https://doi.org/10.30812/bite.v2i1.804.
Astari, N. M. A. J., Divayana, D. G. H., & Indrawan, G. (2020). Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier. Jurnal Sistem Dan Informatika (JSI), 15(1). https://doi.org/10.30864/jsi.v15i1.332.
Berliana, G., Shaufiah, S., & Sa’adah, S. (2018). Klasifikasi Posting Tweet Mengenai Kebijakan Pemerintah Menggunakan Naïve Bayesian Classification. EProceedings of Engineering, 5(1).
Buslim, N., Putra, A. E., & Luh Kesuma Wardhani. (2019). Chi-Square Feature Selection Effect On Naive Bayes Classifier Algorithm Performance For Sentiment Analysis Document. Conference: 2019 7th International Conference on Cyber and IT Service Management (CITSM). https://doi.org/10.1109/CITSM47753.2019.8965332.
Ernawati dkk, S. Y. (2018). Implementation of The Naïve Bayes Algorithm with Feature Selection using Genetic Algorithm for Sentiment Review Analysis of Fashion Online Companies. International Conference on Cyber and IT Service Management (CITSM), 1–5. https://doi.org/10.1109/CITSM.2018.8674286.
Fairuz, A. L., Ramadhani, R. D., & Tanjung, N. A. F. (2021). Analisis Sentimen Masyarakat Terhadap COVID-19 Pada Media Sosial Twitter. Journal of Dinda (Data Science, Information Tehcnology, and Data Analytics), 1(1). https://doi.org/10.20895/dinda.v1i1.180.
Fauziyyah, A. K. (2020). Analisis Sentimen Pandemi Covid19 Pada Streaming Twitter Dengan Text Mining Python. Jurnal Ilmiah SINUS, 18(2). https://doi.org/10.30646/sinus.v18i2.491.
Haryanto, A. W., Mawardi, E. K., & Muljono. (2018). Influence of Word Normalization and Chi-Squared Feature Selection on Support Vector Machine (SVM) Text Classification. International Seminar on Application for Technology of Information and Communication. https://doi.org/10.1109/ISEMANTIC.2018.8549748.
Kurniawan, Y. I. (2018). Perbandingan Algoritma Naive Bayes Dan C.45 Dalam Klasifikasi Data Mining. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(4). https://doi.org/10.25126/jtiik.201854803.
Muhammad, A. N., Bukhori, S., & Pandunata, P. (2019). Sentiment analysis of positive and negative of youtube comments using naïve bayes–support vector machine (nbsvm) classifier. International Conference on Computer Science, Information Technology, and Electrical Engineering (ICOMITEE), 199–205. https://doi.org/10.1109/ICOMITEE.2019.8920923.
Nahdi, K., Ramdhani, S., Yuliatin, R. R., & Hadi, Y. A. (2020). Implementasi Pembelajaran pada Masa Lockdown bagi Lembaga PAUD di Kabupaten Lombok Timur. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 5(1), 177–186. https://doi.org/10.31004/obsesi.v5i1.529.
Nissa, S. F., & Haryanto, A. (2020). Implementasi Pembelajaran Tatap Muka Di Masa Pandemi Covid-19. Jurnal IKA PGSD (Ikatan Alumni PGSD) UNARS, 8(2), 402. https://doi.org/10.36841/pgsdunars.v8i2.840.
Pakpahan, R., & Fitriani, Y. (2020). Analisa Pemafaatan Teknologi Informasi Dalam Pemeblajaran Jarak Jauh Di Tengah Pandemi Virus Corona Covid-19. JISAMAR (Journal of Information System, Applied, Management, Accounting and Researh), 4(2), 30–36.
Rizal, M., Afrianti, R., & Abdurahman, I. (2021). Dampak Kebijakan Pemberlakuan Pembatasan Kegiatan Masyarakat ( PPKM ) bagi Pelaku Bisnis Coffe shop pada Masa Pandemi Terdampak COVID-19 di Kabupaten Purwakarta The Impact of the Policy for Implementing Community Activity Restrictions for Coffee Shop Busi. Jurnal Inspirasi, 12(1), 97–105.
Rodiyansyah, S. F., & Winarko, E. (2012). Klasifikasi Posting Twitter Kemacetan Lalu Lintas Kota Bandung Menggunakan Naive Bayesian Classification. IJCCS - Indonesian Journal of Computing and Cybernetics Systems, 6(1). https://doi.org/10.22146/ijccs.2144.
Sari, I. C., & Yova, R. (2020). Sentiment Analysis of the Covid-19 Virus Infection in Indonesian Public Transportation on Twitter Data: A Case Study of Commuter Line Passengers. International Workshop on Big Data and Information Security (IWBIS). https://doi.org/10.1109/IWBIS50925.2020.9255531.
Sepita, S. F., & Suryanti, S. (2020). Pengaruh Pembelajaran Daring Terhadap Hasil Belajar Kognitif Mahasiswa Pada Mata Kuliah Limnologi. Journal of Research and Education Chemistry, 2(2), 102. https://doi.org/10.25299/jrec.2020.vol2(2).5826.
Vhalery, R., Nur Alfilail, S., & Robbani, H. (2021). Persepsi Mahasiswa Tentang Pembelajaran Online “Google Classroom” Pada Minat Dan Motivasi Belajar. Intelektium, 2(1). https://doi.org/10.37010/int.v2i1.271.
Widya, S. S., Prasetya, J. I., & Anggrainingsih, R. (2018). Twitter Sentiment Analysis of Movie Reviews Using Information Gain and Naïve Bayes Classifier. International Seminar on Application for Technology of Information and Communication, 190–195. https://doi.org/10.1109/ISEMANTIC.2018.8549757.
Wongkar, M., & Angdresey, A. (2019). Sentiment Analysis Using Naive Bayes Algorithm Of The Data Crawler: Twitter. Fourth International Conference on Informatics and Computing (ICIC), 1–5. https://doi.org/10.1109/ICIC47613.2019.8985884.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 A.Habiba, R. Rizal Isnanto, J.Endro Suseno
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)