Pemetaan Sentimen Pengguna Media Sosial dalam Evaluasi Quality of Experience Kinerja Layanan Video Streaming
DOI:
https://doi.org/10.23887/jstundiksha.v13i1.61570Keywords:
QoE, Big Data, Analasis Sentimen, Video Streaming, Persepsi PenggunaAbstract
Salah satu sumber Big Data yang terus bertambah adalah data pada media sosial. Jumlah pengguna media sosial erat kaitannya dengan jumlah pengguna layanan video streaming di Indonesia yang mengalami peningkatan sekitar 25 persen pada tahun 2022, dan mencapai 83 juta jumlah pengguna. Untuk menjamin kualitas komunikasi data yang baik, diperlukan pengukuran QoE yang baik, efisien dan akurat. Proses pengukuran yang lama dan biaya yang cukup besar dalam QoE menjadi masalah dalam menjamin layanan video streaming. Jumlah pengguna yang sangat banyak memberikan peluang terjadi banyak interaksi pengguna dalam media sosial dan sentimen pengguna dalam memberikan umpan balik secara alami terkait kepuasan layanan yang diterima. Penelitian ini bertujuan untuk memetakan persepsi pengguna dalam pengukuran QoE berdasarkan komentar pengguna layanan pada media sosial. Penelitian ini termasuk ke dalam jenis kuantitatif dan desain eksperimental sebagai desain penelitian. Subjek penelitian ini adalah persepsi pengguna layanan video streaming dalam media sosial. Data yang digunakan dalam penelitian dikumpulkan berbasis Text Mining untuk selanjutnya dilakukan Social Network Analystic untuk menganalisis data tersebut. Hasil dari sentimen pengguna layanan yang telah dipetakan menunjukan bahwa aspek sistem dan konten penyedia layanan dengan jumlah 59,43% pada layanan video streaming. Hal tersebut menunjukan bahwa persepsi sentimen pengguna layanan memiliki korelasi yang cukup tinggi dengan parameter QoE dalam pengukuran kinerja layanan video streaming. Implikasi penelitian ini adalah Penelitian ini memberikan wawasan yang mendalam mengenai bagaimana pengguna merespons dan merasakan kualitas layanan video streaming berdasarkan pengalaman mereka yang diekspresikan di media social.
References
Akhtar, Z., & Falk, T. H. (2017). Audio-Visual Multimedia Quality Assessment: A Comprehensive Survey. IEEE Access, 5, 21090–21117. https://doi.org/10.1109/ACCESS.2017.2750918.
Akhtar, Z., Siddique, K., Rattani, A., Lutfi, S. L., & Falk, T. H. (2019). Why is multimedia quality of experience assessment a challenging problem? IEEE Access, 7, 117897–117915. https://doi.org/10.1109/ACCESS.2019.2936470.
Alamsyah, A., & Indraswari, A. A. (2019). Social network and sentiment analysis for social customer relationship management in Indonesia banking sector. Advanced Science Letters, 23(4), 3808–3812. https://doi.org/10.1166/ASL.2017.9279.
Andruloniw, P., Kowalik, K., & Zwierzykowski, P. (2019). Unsupervised Learning Data-Driven Continuous QoE Assessment in Adaptive Streaming-Based Television System. Applied Sciences (Switzerland, 12(16), 8288. https://doi.org/10.3390/APP12168288/S1.
Angelia, D. (2022). Platform Video Streaming Paling Digemari Masyarakat Indonesia 2022 - GoodStats. Goodstats.Id. https://doi.org/https://goodstats.id/article.
Barman, N., & Martini, M. G. (2019). QoE Modeling for HTTP Adaptive Video Streaming–A Survey and Open Challenges. IEEE Access, 7, 30831–30859. https://doi.org/10.1109/ACCESS.2019.2901778.
Bishop, C. M. (2020). Pattern Recognition and Machine Learning. https://link.springer.com/book/9780387310732.
Bouraqia, K., Sabir, E., Sadik, M., & Ladid, L. (2020). Quality of Experience for Streaming Services: Measurements, Challenges and Insights. IEEE Access, 8, 13341–13361. https://doi.org/10.1109/ACCESS.2020.2965099.
Bratawisnu, M. K., & Alamsyah, A. (2020). Social Network Analysis Untuk Analisa Interaksi User Dimedia Sosial Mengenai Bisnis E-Commerce (Studi Kasus: Lazada, Tokopedia Dan Elevenia. Almana : Jurnal Manajemen Dan Bisnis, 2(2), 107–115. https://doi.org/10.36555/ALMANA.V2I2.143.
Chen, K. T., Wu, C. C., Chang, Y. C., & Lei, C. L. (2020). A crowdsourceable QoE evaluation framework for multimedia content. Proceedings of the 2009 ACM Multimedia Conference, with Co-Located Workshops and Symposiums, 491–500. https://doi.org/10.1145/1631272.1631339.
Cieplinska, N., Janowski, L., Moor, K., & Wierzchon, M. (2022). Long-Term Video QoE Assessment Studies: A Systematic Review. IEEE Access, 10, 133883–133897. https://doi.org/10.1109/ACCESS.2022.3231747.
Cisco Predicts | Fierce Video. (2020). Aplikasi Video on Demand Paling Favorit di Indonesia. https://databoks.katadata.co.id/datapublish/2022/07/29.
Fizza, K., Banerjee, A., Mitra, K., Jayaraman, P. P., Ranjan, R., Patel, P., & Georgakopoulos, D. (2021). QoE in IoT: a vision, survey and future directions. Discover Internet of Things, 1(1), 1–14. https://doi.org/10.1007/S43926-021-00006-7.
Gramaglia, M., Digon, I., Friderikos, V., Hugo, D., Mannweiler, C., Puente, M. A., Samdanis, K., & Sayadi, B. (2019). Flexible connectivity and QoE/QoS management for 5G Networks. The 5G NORMA View. 2016 IEEE International Conference on Communications Workshops, 373–379. https://doi.org/10.1109/ICCW.2016.7503816.
Habachi, O., Hu, Y., Schaar, M., Hayel, Y., & Wu, F. (2019). MOS-based congestion control for conversational services in wireless environments. IEEE Journal on Selected Areas in Communications, 30(7), 1225–1236. https://doi.org/10.1109/JSAC.2012.120808.
Hossfeld, T., Keimel, C., Hirth, M., Gardlo, B., Habigt, J., Diepold, K., & Tran-Gia, P. (2019). Best practices for qoe crowdtesting: Qoe assessment with crowdsourcing. IEEE Transactions on Multimedia, 16(2), 541–558. https://doi.org/10.1109/TMM.2013.2291663.
International telemucation. (2020). 100+ Social Media Statistics You Need To Know In 2023 [All Networks. https://statusbrew.com/insights/social-media-statistics.
Khalil, A., Mbarek, N., & Togni, O. (2019). IoT Service QoS Guarantee Using QBAIoT Wireless Access Method. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11005 LNCS (pp. 157–173). https://doi.org/10.1007/978-3-030-03101-5_15/COVER.
Kim, W., Ahn, S., Nguyen, A. D., Kim, J., Kim, J., Oh, H., & Lee, S. (2020). Modern trends on quality of experience assessment and future work. APSIPA Transactions on Signal and Information Processing, 8. https://doi.org/10.1017/ATSIP.2019.16.
Kim, W., Kim, J., & Lee, S. (2019). Quality of Experience using Deep Convolutional Neural Networks and future trends. APSIPA Transactions on Signal and Information Processing.
Kougioumtzidis, G., Poulkov, V., Zaharis, Z. D., & Lazaridis, P. I. (2022). A Survey on Multimedia Services QoE Assessment and Machine Learning-Based Prediction. IEEE Access, 10, 19507–19538. https://doi.org/10.1109/ACCESS.2022.3149592.
Live Video Usage Will Increase 15-Fold. (2021). Live video usage will increase 15-fold by 2021, Cisco predicts | Fierce Video. https://www.fiercevideo.com/cable/live-video-usage-will-increase-15-fold-by-2021-cisco-predicts.
Marhantara, Y. G., & Widodo, T. (2021). Pengaruh Social Media Marketing Twitter Dalam Upaya Meningkatkan Loyalitas Penggunaan Customer Streaming Vidio.com (Studi Pada Kota Bandung. EProceedings of Management, 8(5). https://openlibrarypublications.telkomuniversity.ac.id/index.php/management/article.
Mizoguchi, T., & Ito, Y. (2020). Effect of QoS degradation caused by 6to4 and IPsec on QoE for Web services. IEEE 3rd Global Conference on Consumer Electronics, GCCE, 5–9. https://doi.org/10.1109/GCCE.2014.7031121.
Netflix. (2020). Social Network Analysis for Foundations: Six Ideas to Scale Impact - Visible Network Labs. https://visiblenetworklabs.com/2023/01/06/social-network-analysis-for-foundations.
Permana, F. C., Wicaksono, Z. M., Kurniawan, C., Abdullah, A. S., & Ruchjana, B. N. (2021). Perception analysis of the Indonesian society on twitter social media on the increase in BPJS kesehatan contribution in the Covid 19 pandemic era. Journal of Physics: Conference Series, 1722(1), 12022. https://doi.org/10.1088/1742-6596/1722/1/012022.
Ribeiro, F., Florêncio, D., Zhang, C., & Seltzer, M. (2019). CROWDMOS: An approach for crowdsourcing mean opinion score studies. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2416–2419. https://doi.org/10.1109/ICASSP.2011.5946971.
Ríos, S. A., Aguilera, F., Nuñez-Gonzalez, J. D., & Graña, M. (2019). Semantically enhanced network analysis for influencer identification in online social networks. Neurocomputing, 326–327, 71–81. https://doi.org/10.1016/J.NEUCOM.2017.01.123.
Said, O. (2022). Design and performance evaluation of QoE/QoS-oriented scheme for reliable data transmission in Internet of Things environments. Computer Communications, 189, 158–174. https://doi.org/10.1016/J.COMCOM.2022.03.020.
Sapountzi, A., & Psannis, K. E. (2019). Social networking data analysis tools & challenges. Future Generation Computer Systems, 86, 893–913. https://doi.org/10.1016/J.FUTURE.2016.10.019.
Seufert, M., Wassermann, S., & Casas, P. (2019). Considering User Behavior in the Quality of Experience Cycle: Towards Proactive QoE-Aware Traffic Management. IEEE Communications Letters, 23(7), 1145–1148. https://doi.org/10.1109/LCOMM.2019.2914038.
Song, E., Pan, T., Fu, Q., Zhang, R., Jia, C., Cao, W., & Huang, T. (2020). Threshold-oblivious on-line web QoE assessment using neural network-based regression model. IET Communications, 14(12), 2018–2026. https://doi.org/10.1049/IET-COM.2019.1229.
Sugiyono. (2019). Metode Penelitian Kuantitatif (19th ed.). Alfabeta.
Toet, A., Mioch, T., Gunkel, S. N. B., Niamut, O., & Erp, J. B. F. (2021). Towards a multiscale QoE assessment of mediated social communication. Quality and User Experience, 7(1), 1–22. https://doi.org/10.1007/S41233-022-00051-2.
Yang, M., Wang, S., Calheiros, R. N., & Yang, F. (2020). Survey on QoE assessment approach for network service. IEEE Access, 6, 48374–48390. https://doi.org/10.1109/ACCESS.2018.2867253.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fahmi Candra Permana, Yoanes Bandung
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Jurnal Sains dan Teknologi (JST) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. (See The Effect of Open Access)